Section 1.8: EXPO $\mathcal{N E N T S} \mathcal{A N D} O$ RDER $O \mathcal{F} O P E R \mathcal{A T} I O \mathcal{N} S$
When you are done with your home work you should be able to...
π Evaluate exponential expressions
π Simplify algebraic expressions with exponents
π Use the order of operations agreement
π Evaluate mathematical models
WARM- UP:

1. Determine whether the given number is a solution of the equation.

$$
\begin{aligned}
& \frac{5 m-1}{6}=\frac{3 m-2}{4} ;-4 \\
& \frac{5(-4)-1}{6}=\frac{?}{=} \frac{3(-4)-2}{4}
\end{aligned} \quad \frac{-20-1}{6} \stackrel{?}{=} \frac{-12-2}{4}\binom{-72}{=} \frac{-14-7}{42}=
$$

2. Write a numerical expression for each phrase. Then simplify the numerical expression.
a. 14 added to the product of 4 and -10

$$
\begin{aligned}
& 4(-10)+14 \\
= & -40+14 \\
= & -26
\end{aligned}
$$

6. The quotient of -18 and the sum of -15 and 12

$$
\begin{aligned}
\frac{-18}{-15+12} & =\frac{-18}{-3} \\
& =6
\end{aligned}
$$

$$
\text { or }-18 \div(-15+12)=-18 \div(-3)
$$

$$
=6
$$

If b is a real number and n is a natural number,

$$
b^{n}=\underbrace{b \cdot b \cdot b \cdots b}_{n \text { times }}
$$

n
n

Example 1: Evaluate.

1. $(-5)^{3}=(-5)(-5)(-5)$

$$
=-125
$$

$$
\text { 2. } \begin{aligned}
(-12)^{2} & =(-12)(-12) \\
& =144 \\
\text { (3) }-12^{2} & =-(12 \cdot 12)=-144
\end{aligned}
$$

O RTE $O \mathcal{F} O$ PERATIONS

1. Perform all operations_-_ within grouping _-.... symbols
2. Evaluate all exponential expressions.
3. Do all multiplications and divisions in the order in which they occur, working from left_-
Finally, do all addition o and owbtrac
following procedures:
π work from left_-_ to right to right
4. Finally, do all additions_ and OWbtractions_using one of the
π Work from left__-_ to right__-_ and do additions and subtractions in the order \qquad in which they occur.
or
π Rewrite subtractions as additions of -opposites combine positive and negative numbers separately, and then_-_add__-_- these results.

Example 2: Simplify.

1. $40 \div 4 \cdot 2=10 \cdot 2$

$$
=20
$$

$$
\text { 3. } \begin{aligned}
(3 \cdot 5)^{2}-3 \cdot 5^{2} & =15^{2}-3 \cdot 25 \\
& =225-75 \\
& =150
\end{aligned}
$$

2. $\frac{-5(7-2)-3(4-7)}{-13-(-5)}$

$$
\begin{aligned}
& =\frac{-5(5)-3(-3)}{-13+5} \\
& =\frac{-25+9}{-8} \\
& =\frac{-16}{-8}
\end{aligned}
$$

$$
\begin{aligned}
& 4 \cdot\left[-\frac{4}{7}-\left(-\frac{2}{5}\right)\right]\left[-\frac{3}{8}+\left(-\frac{1}{9}\right)\right] \\
= & {\left[-\frac{4}{7} \cdot \frac{5}{5}+\frac{2}{5} \cdot \frac{7}{7}\right]\left[-\frac{3}{8} \cdot \frac{9}{9}-\frac{1}{9} \cdot \frac{8}{8}\right] } \\
= & {\left[-\frac{20}{35}+\frac{14}{35}\right]\left[-\frac{27}{72}-\frac{8}{72}\right] } \\
= & {\left.\left[-\frac{16 .}{35}\right]\left[-\frac{331}{72}\right] \rightarrow-\frac{1}{12}\right] }
\end{aligned}
$$

Example 3: Simplify each algebraic expression.

1. $-6 x^{2}+18 x^{2}=12 x^{2}$

$$
\text { 2. } 4\left(7 x^{3}-5\right)-\left[2\left(8 x^{3}-1\right)+1\right] \quad \begin{array}{ll}
= & 4\left(7 x^{3}\right)-4(5)-\left[2\left(8 x^{3}\right)-2(1)+1\right] \\
= & 28 x^{3}-20-\left[16 x^{3}-1\right]
\end{array} \quad \begin{aligned}
& =28 x^{3}-20-16 x^{3}-(-1) \\
& = \\
& =28 x^{3}-20-16 x^{3}+1 \\
& =
\end{aligned}
$$

$\mathcal{A P P L I C A T I O \mathcal { N } S}$

In Palo $\mathcal{A l t o}, \mathcal{C A}$, a government agency ordered computer-related companies to contribute to a pool of money to cle an up underground water supplies. (The companies had stored toxic chemicals in le aking underground containe rs). The mathematical model $C=\frac{200 x}{100-x}$ describes the cost, C, in tens of thousands of dollars, for removing x percent of the contaminants.

1. Find the cost, in tens of thousands of dollars, for removing 50% of the contaminants.
2. Find the cost, in tens of thousands of dollars, for removing 60% of the contaminants.
3. Describe what is happening to the cost of the cleanup as the percentage of contaminant removed increases.

When you are done with your home work you should be able to...
π Identify line ar equations in one variable
π Use the addition property of equality to solve equations
π Solve applied problems using formulas
\mathcal{W} ARM- UP:
Simplify:

$$
\begin{aligned}
& \text { 1. } \frac{1}{2}-\frac{2}{3} \div \frac{5}{9}+\frac{3}{10} \\
& =\frac{1}{2}-\frac{2}{3} \cdot \frac{9}{5}+\frac{3}{10} \\
& =\frac{1,5}{25}-\frac{62}{52}+\frac{3}{10} \\
& =\frac{5}{10}-\frac{12}{10}+\frac{3}{10} \\
& =\frac{5-12+3}{10}
\end{aligned}
$$

$\mathcal{L I N E A R} \mathcal{E} Q \mathcal{U} \mathcal{A} I O \mathcal{N} S I \mathcal{N} O \mathcal{N} \mathcal{E} \mathcal{V} \mathcal{A R} I \mathcal{A B L E}$
In Chapter 1, we learned that an \qquad is a statement that two -_algebraic _-_ expressions are -equal ------We deter ruined whether a given number is an equation's \square by substituting that number for each occurrence of the variable_-_. When the

- Substitution -- resulted din t true state me nt, that _number _--- was a-- Solution ----- When the subs stituted number resurfee in a -- false ---- statement \qquad a solution

Solving an equation: The Process)_- of finding the _number \qquad (or numbers \qquad) that make the equation a \qquad state mene. These numbers are called the Solutions \qquad or roots _-_ of the equation, and we say that they satisfy \qquad the equation.
definition of linear equation in one variable
a linear equation in ore variable x is an equation that can be written in the form

$$
a x+b=c
$$

where a_{1}, b_{-}, and C_{-}are real numbers, and _ $a \neq 0$
Example 1: Give three examples of a linear equation in one variable.

$$
\begin{aligned}
& \text { Example 1: Give three examples of anear } \\
& \text { 1. } 2 x+3=7(a=2, b=3, c=7)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } 2 x+3=7 \quad(a=2, b=3, c=0 \\
& \text { 2. } 5 x=12 \quad(a=5, b=0, c=12)
\end{aligned}
$$

3. $\frac{x}{2}-8=x$ since it is equivalent to $-\frac{x}{2}-8=0$

$$
\begin{aligned}
& -\frac{x}{2}-8=0 \\
& \left(a=-\frac{1}{2}, b=-8, c=0\right.
\end{aligned}
$$

Example 2: Give two examples of a nonline ar equation in one variable.

1. $\frac{5}{x}=50$
2. $x^{2}-4 x+3=12$
3. $|x|=12$

The_-Same__real number or algebraic_-_ expression may be -added_- to _both_-_ sides of an equation_... without changing the equation's --solution solution _........at is,

$$
\text { If } a=b \text { then } a+c=b+c
$$

Example 3: Solve the following equations. Check your solutions.

1. $y-5=-18$

$$
\begin{aligned}
& \frac{+5}{y+0}=-\frac{+5}{13} \\
& y=-13
\end{aligned}
$$

$$
y-5+5=-18+5
$$

$$
\begin{aligned}
y-0 & =-13 \\
u & =-13
\end{aligned}
$$

$$
y=-13
$$

2. $18+z=14$

$$
\{-13\}
$$

$-18 \quad-18$

$$
z=-4
$$

$$
\{-4\}
$$

3. $x+10.6=-9.0$
$-10.6-10.6$
$x=-19.6$

CREATED BY SHANNON M ARTIN GRACE

6.

$$
\begin{aligned}
& \begin{array}{l}
7 x+3=6(x-1)+9 \\
7 x+3=6 \cdot x-6 \cdot 1+9 \\
7 x+3=6 x+3 \quad-1 \mid x=0 x \\
-3=0 \\
7 x=6 x \\
-6 x-6 x
\end{array} \quad x=0
\end{aligned}
$$

 EQUATION
our goal is to isolate__ all the variable terms on one side of the equation. We can use the addition -quality _--- to do this.
$\mathcal{A P P L I C A T I O N S}$

1. The cost, \mathcal{C}, of an item (the price paid by a retailer) plus the markup, \mathcal{M}, on that item (the retailer's profit) equals the selling price, \mathcal{S}, of the item. The formula is $C+M=S$.

The selling price of a television is $\$ 650$. If the cost to the retailer for the te le vision is $\$ 520$, find the markup.

2. What is the difference between solving an equation such as
$\rightarrow 5 y+3-4 y-8=6+9$ and simplifying an alge 6 raid expression such as [$\begin{aligned} & 5 y+3-4 y-8 \text { ? } \\ & \text { In the equation, we could solve for } y \text {. }\end{aligned}$

In the algebraic explosion we could write asimplified expression. $5 y+3-4 y-8=y-5$

When you are done with your home work you should be able to...
π Use the multiplication property of equality to solve equations
π Solve equations in the form of $-x=c$
π Use the addition and multiplication properties to solve equations
π Solve applied problems using formulas
$\mathcal{W} \mathcal{A R M}-\mathcal{U P}:$
Solve:
$\mathcal{T H E} \mathcal{M U L T} \operatorname{IPLICATION}$ PROPERTY OF EQUALITY

$$
\text { 2. } \left.\left.\begin{array}{rl}
x & =-7(2-x)+18-\frac{-6 x}{-6}=\frac{4}{-6} \\
x & =-7.2-(-7)(x)+18 \quad x=-\frac{2}{3} \\
x=-14+7 x+18 \\
x & =4+7 x \\
-7 x & -7 x
\end{array}\right\}-\frac{2}{3}\right\}
$$

The - Sane -- nonzero-- raf number or algebraic --expression may_ -multiply -- both sites of an equation without changing the ---Solution \qquad . That is,

$$
\text { If } a=b \text { and } c \neq 0 \text { then } a \cdot c=b \cdot c
$$

Example 1: Solve the following equations. Check your solutions.

$$
\begin{aligned}
& \text { 1. } \begin{aligned}
\frac{-5 z}{-5} & =\frac{-20}{-5}\{4\} \\
z & =4
\end{aligned} \\
& { }_{4}^{(-8.8}\left(-\frac{1}{8} x\right)=6(-8) \\
& 1 x=-48 \\
& \{-48\} \\
& x=-48
\end{aligned}
$$

2. $\frac{-51}{-1}=\frac{-y}{-1}$

$$
51=y
$$

$$
y=51
$$

3. $8 x-3 x=-45$

$$
\begin{aligned}
& \frac{5 x}{5}=\frac{-45}{5} \\
& x=-9
\end{aligned}
$$

$\mathcal{A P P L I C A T I O N S}$
5. $\begin{array}{r}6 z-3=z+2 \\ -z\end{array}-\frac{5 z}{5}=\frac{5}{5}$

$$
\begin{gathered}
5 z-3=2 \\
+3+3
\end{gathered}
$$

$$
\begin{aligned}
& z=1 \\
& \{1\}
\end{aligned}
$$

6. $5 y+6=3 y-6$
\qquad

$$
\begin{array}{r}
2 y+6=-6 \\
-6=-6
\end{array}
$$

$$
\frac{-6}{\frac{2 y}{2}}=\frac{-6}{-12}
$$

$y=-6$

The formula $M=\frac{n}{5}$ models your distance, \mathcal{M}, from a lightning strike in a thunderstorm if it takes n seconds to hear thunder after seeing the lightning.

If you are three miles away from the lightning flash, how long will it take the sound of thunder to reach you?

$$
\begin{aligned}
M & =\frac{n}{5} \\
5 \cdot 3 & =\frac{n}{5} \cdot 5
\end{aligned}
$$

$15=n$

$$
\text { We have } \frac{n}{5} \rightarrow \frac{1}{5} n
$$

we want

If takes 15 seconds to hear theswnal 10 of thunder when thelightringis amis a ail.

Section 2.3: SOLVING LINEAR EQUATIONS
When you are done with your home work you should be able to...
π Solve line ar equations
π Solve line ar equations containing fractions
π Identify equations with no solution or infinitely many solutions
π Solve applied problems using formulas WARM- UP:

Solve:

$$
\begin{aligned}
& \text { Check: } x=4 \\
& -(4) \stackrel{?}{=}-7(4)+24 \\
& -4=-28+24
\end{aligned} \rightarrow-4=-4 \checkmark
$$

1. $\frac{-12 z}{-12}=\frac{144}{-12}$

$$
z=-12
$$

$\{-12\}$
2. $-x=-7 x+24$

$$
\frac{+7 x}{\frac{6 x}{6}}=\frac{+7 x}{\frac{24}{6}}
$$

A STEP- BY- STEP PROCEDURE FOR SOLVING LINEAR EQ nATIONS

1. Simplify- the -algebraic expression_- or cacti site.
2. Collect all the _Variable_- terms on one side and all the -constant terms on the ot fer side.
3. Isolate ----- tic variable \qquad
4. Check the proposed solution in the _-original equation.
Example 1: Solve the following equations. Check your solutions.
5. $-z-34+10 z=2+10 z-54$

CREATED BY SHANNON MARTIN GRACE
4. $3(x+2)=x+30$

$$
\begin{aligned}
& 3 x+3 \cdot 2=x+30 \\
& 3 x+6=x+30 \\
& \frac{-x}{2 x+6}=-x \\
& -6
\end{aligned}
$$

$$
\frac{2 x}{2}=\frac{24}{2}
$$

\square

$$
\begin{aligned}
& \text { 2. } 20=44-\overparen{8(2-x)} \\
& 20=44-16+8 x \\
& 20=28+8 x \\
& -20-20 \quad x=-1 \\
& 0=8+8 x \\
& \frac{-8 x}{-8 x}=\frac{-8 x}{8} \\
& \{-1\} \\
& \frac{-8 x}{-8}=\frac{8}{-8} \\
& \text { 3. } 5 x-4(x+9)=2 x+3 \\
& 5 x-4 x-36=2 x+3 \\
& \begin{array}{l}
x-36=2 x+3 \\
\frac{-2 x}{-x-36}=\frac{2 x}{3} \\
\frac{+36}{-153} \\
\frac{+x}{-1}=\frac{399}{-1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5. } \\
& 2(x-15)+3 x=(6+4 x)-(9 x-2) \\
& 2 x-30+3 x=6+4 x-9 x+2 \\
& 5 x-30=-5 x+8 \\
&+5 x+5 x \\
& 10 x-30=8 \\
&+30 \frac{+30}{88} \\
& \frac{10 x}{10}= x=\frac{19}{10}
\end{aligned}
$$

$$
\text { 6. } \quad 100=\overparen{(x-1)+4(x-6)}
$$

$$
100=-x+1+4 x-24
$$

$$
\begin{aligned}
& 100=\begin{array}{l}
3 x-23 \\
+23 \\
\frac{123}{3}
\end{array}=\frac{3 x}{3}
\end{aligned}\{41\}
$$

$$
41=x
$$

LINEAR EQUATIONS WITH FRACTIONS Equations are _easier
\qquad to solve when they do not contain _-fractions_. To remove fractions, we can multiply_.........th_sides of the equation by the -leapt least --common denominator of any fractions in the equation. Remember..the_LCD_-_ is the -Smallest \qquad number that all \qquad denominators will_ divide
 an equation of -fractions

Example 2: Solve the following equations. Che ar the fractions first. Check your solutions.

$$
\begin{aligned}
& \text { 1. } \frac{x}{2}+13=-22 \\
& 2 \cdot \frac{2-13-13}{2 \cdot \frac{x}{2}}=-35 \cdot 2 \\
& x=-70 \\
& \{-70\} \\
& 30 \cdot\left(\frac{z}{5}-\frac{1}{2}\right)=\left(\frac{z}{6}\right) 30^{5} \\
& \frac{30}{1} \cdot \frac{z}{5}-\frac{30^{15}}{1} \cdot \frac{1}{2}=5 z \\
& 6 z-15=5 z \\
& \frac{-6 z}{-15}=\frac{-6 z}{-z} \\
& \frac{-15}{-1}=\frac{-z}{1} \\
& \begin{array}{l}
15=z \\
\{15\}
\end{array} \\
& \begin{array}{l}
15=z \\
\{15\}
\end{array} \\
& \text { 3. }\left(\frac{3 y}{4}-\frac{2}{3}\right)=\left(\frac{7}{1 / 2}\right) \cdot \chi \\
& \frac{3 n}{1} \cdot \frac{3 y}{4}-\frac{4}{1} \cdot \frac{2}{\beta_{1}}=7 \\
& 3(3 y)-4(2)=7 \quad\left\{\frac{5}{3}\right\} \\
& \begin{aligned}
\frac{9 y-8}{+8} & =\frac{18}{9 y} \\
\frac{9 y}{9} & =\frac{15}{93}
\end{aligned} \\
& 12 \cdot\left(\frac{x-2}{3}-\frac{4}{1}\right)=\left(\frac{x+1}{4}\right) \cdot x^{3} \\
& 4 \frac{12}{1} \cdot \frac{x-2}{3}-12 \cdot 4=3(x+1) \\
& \begin{array}{l}
4(x-2)-48=3 x+3 \\
4 x-8-48=3 x+3
\end{array}\{59\} \\
& \begin{aligned}
4 x-56 & =3 x+3 \\
\frac{-3 x}{x-56} \begin{aligned}
+56
\end{aligned} & =\frac{-3 x}{3} \\
x & =59
\end{aligned}
\end{aligned}
$$

If you attempt to Solve
\qquad an equation with _no solution
\qquad or one that is true for _every real number, you will elimininate the variable \qquad .
π an inconsistad equation with no solution \qquad results in - false \qquad state tent, suck as \qquad $0=1$
π an _identity $^{-\quad \text { that is --true }-- \text { for -- every }}$ \qquad real mamecer results in a - true \qquad statement, sucfas $0=0$

Example 3: Solve the following equations. Use words or set notation to identify equations that have no solution, or equations that are true for all real numbers. Checkyour solutions.

$$
-10=10
$$

$\left\{\begin{array}{c}-5=-5 \text { grittily } \\ \text { true }\end{array}\right.$

$$
\begin{aligned}
& \text { true g suctions } \\
& \text { many slut ion } \\
& \text { Salvia }
\end{aligned}
$$

CREATEDBYSHANNON MARTIN GRACE I

$$
\begin{aligned}
& \text { rion'l } \\
& \text { 3. } \frac{x}{2}+\frac{2 x}{3}+3=x+3 \\
& \text { - } \frac{x}{2}+\frac{2 x}{2}=(x) \cdot 6+3 x+4 x=6 x \\
& 7 x=6 x \\
& \frac{-6 x}{x}=\frac{-6 x}{0 x} \\
& \text { 4. } \frac{x}{4}+3=\frac{x}{4} \\
& x=0 \\
& \frac{-\frac{x}{4}}{4} \quad \frac{-x}{4} \\
& 3=0 \quad \text { False } \rightarrow \text { nosolution }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } 2(x-5)=2 x+10 \\
& 2 x-10=2 x+10 \\
& \frac{-2 x}{0 x-16}=\frac{-2 x}{0 x+10} \\
& 0-10=0+10 \\
& \text { 2. } 5 x-5=3 x-7+2(x+1) \\
& 5 x-5=3 x-7+2 x+2 \\
& 5 x-5=5 x-5 \\
& \int_{\{ }^{-10} \\
& -5 x-\frac{-5 x}{0 x-5} \\
& 0 x-5=0 x-5 \\
& 0-5=0-5
\end{aligned}
$$

The formula $p=15+\frac{5 d}{11}$ describes the pressure of sea water, p, in pounds per square foot, at a depth of feet below the surface.

1. The record depth for breath-held diving, by Francisco Ferreras (Cuba) off Grand Bahama Island, on \mathcal{N} november 14, 1993, involved pressure of 201 pounds per square foot. To what depth did Francisco descend on this venture? (He was underwater for 2 minutes and 9 seconds!)

He ventured to a depth of $409 \frac{1}{5} \mathrm{ft}$
2. At what depth is the pressure 20 pounds per square foot?

Section 2.4: FORMALAS $\mathcal{A N D}$ PERCENTS
When you are done with your home work you should be able to...
π Solve a formula for a variable
π Express a percent as a decimal
π Express a decimal as a percent
π Use the percent formula
π Solve applied problems involving percent change
$\mathcal{W} \mathcal{A R M}-\mathcal{U P}:$
Solve:

2. $\frac{1.3}{26}=\frac{P \cdot 26}{26}$

$0.05=P$
$\mathcal{S O L V I N G ~} \mathcal{A} \mathcal{F O R M U L A} \mathcal{F} O \mathcal{R} O \mathcal{N E} O \mathcal{F} I \mathcal{T S}$ VARIABLES
solving a formula for a variable means rewriting_-_-_ the formula so that the _Variable _-_ is _-_ isolated on one side of the equation. To solve a formula for one of its variables, treat that __Variable as if it we re the only variable in the equation......

PERI METER

 or - Kilometers
 by the formula

$$
\begin{aligned}
& P=2 w+2 l \text { or } \\
& P=2(w+l)
\end{aligned}
$$

\square
sQuare uNits
A square unit is a square in length. The area of a 2 dimensional figure is the number of Square units \qquad it takes to fill the interior of the figure.

$$
\begin{aligned}
& A=42+110 \\
& A=152 \text { sq. units }
\end{aligned}
$$

$\mathcal{A R E A} O \mathcal{F} \mathcal{A} \mathcal{R E C T} \mathcal{A} \mathcal{N} G L \mathcal{E}$
 the formula

$$
A=l \cdot W
$$

ω \square
Example 1: Solve the following formulas for the specified variable. $\quad a(b+c)=a b+a c$

$$
\text { 1. } \begin{aligned}
d & =r t ; t \\
\frac{d}{r} & =\frac{r \cdot t}{r} \\
\frac{d}{r} & =t
\end{aligned} \quad t=\frac{d}{r}
$$

$$
\text { 2. } P=C+M C ; C
$$

$$
P=C \cdot 1+C \cdot M
$$

CREATED BYSHANNONMARTIN GRACE

Example 2: Consider a rectangle which has an are of 15 square feet and a width of 3 feet.

1. Find the length.

$$
A=15, l=?, w=\frac{3}{2}
$$

2. Find the perimeter.

$$
\begin{aligned}
& p=2 \hat{+}+2 \mathrm{w} \\
& p=2(5)+2(3) \\
& p=10+6 \\
& p=16 \mathrm{ft}
\end{aligned}
$$

BASICS Of PERCENTIS
--percents -- are the resutio of - exp pressing _- numbers as part of ---100 -- The word percent ---- means per -- hundred .

PERCENT I NOTATION
-nq

$$
100 \%=1
$$

STEPS FOR EXPRESSING A PERCENT AS A DECIMAL NUMBER

1. Move the decimal_ point

Example 3: Express each percent as a decimal.

1. $9.5 \%=\frac{9.5}{100}$

$$
=0.095
$$

2. $\begin{aligned} 235 \% & =\frac{235}{100} \\ & =2.35\end{aligned}$
3. Move the \qquad -decimal point \qquad places to the Sight
4. Attack a - percent sign.

Example 4: Express each decimal as a percent.

1. $1.75(100 \%)=175 \%_{0}$

$$
\text { 2. } 0.01(100 \%)=1 \%
$$

A FO RMULA I $\mathfrak{N N O} \mathcal{L V I N G}$ PERCENT

- Percents
\qquad are useful in comparing two numbers.. To
 using a percent P , the following formula is used: percent

Example 5: Solve.

1. What is 12% of 50?

$$
\begin{aligned}
& A=12 \% \cdot 50 \\
& A=0.12(50) \\
& A=6
\end{aligned}
$$

2. 6 is 30% of what?

$$
6=30 \% \cdot B
$$

$$
\frac{6}{0.30}=\frac{0.30 \cdot B}{0.30}
$$

$\mathcal{A P P L I C A T I O \mathcal { N } S}$

1. The ave rage, or mean, \mathcal{A}, of four examgrades, x, y, z, and w, is given by the formula $A=\frac{x+y+z+w}{4}$.
a. Solve the formula for w.
2. Ulse the formula in part (a) to solve this problem: On your first three exams, your grades are $76 \%, 78 \%$, and $79 \%: x=76, y=78$, and $z=79$. What must youget on the fourth exam to have an average of 80% ?
3. A charity fas raised $\$ 225,000$, with a goal of raising $\$ 500,000$. What percent of the goal has been raised?
4. Suppose that the localsales tax rate is 7% and you 6 uy a grapfing calculator for $\$ 96$.
a. How much tax is due?
5. What is the calculator's totalcost?

Section 2.5: $\mathcal{A N}$ INTRODUCTIOn \mathcal{N} TO PROBLEM SOLVING
When you are done with your home work you should be able to...
π Translate English phrases into algebraic expressions
π Solve algebraic word problems using line ar equations WARM-UP:

Solve:
\mathcal{A} fax machine regularly sells for $\$ 380$. The sate price is $\$ 266$. Find the percent decrease in the machine's price.

$$
\begin{aligned}
& A=.01 P \cdot B \\
& \frac{14}{380}=\frac{.01 P(380)}{380} \begin{array}{l}
301 \\
30=P \\
\text { The machine's price decreased by } 3016 .
\end{array}
\end{aligned}
$$

STEPS FOR SOLVING WORD PRO BLESS

1. Analyst is: $\mathfrak{R E A D}$ the problem. Then, _-read \qquad the problem again!!! Draw a _picture___ indoor make a _hart___ Identify and name all known and unknown _-quantified
2. Translate to Mathese: Write an equation that translates, or models
\qquad the conditions of the problem.
3. Solve: --Solve solution.
4. conclusion: Write your result, in words

$$
\begin{aligned}
& A=P \% \cdot B \\
& A=.01 P \cdot B \\
& A=380-266=114 \\
& B=380 \\
& \frac{0.3}{.01}=\frac{.01 P}{0.01}
\end{aligned}
$$

Example 1: Solve the following word problems.

1. The sum of a number and 28 is 245. Find the number.

Analysis
Let x be the number
(3)
(4) Conclusion
(2) Translate.

$$
x+28=245
$$

$$
x+28=245
$$

The number 217.
2. Three times the sum of five and a number is 48 . Find the number.
(1) Analysis
(3)Solve
(4) Conclusion
let x bethe number

$$
\begin{aligned}
3(5+x) & =48 \\
15+3 x & =48 \\
\frac{-15}{3 x} & =\frac{-15}{33} \\
\frac{3 x}{3} & =11 \\
x & =11
\end{aligned}
$$

$$
\text { The number is } 11 \text {. }
$$

(2) Translate

$$
3(5+x)=48
$$

3. Eight subtracted from six times a number is 298. Find the number.
(1) Analysis

Let x be the number
(3) Solve
(4) Conclusion
(2) Translate

$$
\begin{aligned}
& 6 x-8=198 \\
& +88 \\
& \frac{6 x}{6}=\frac{306}{6} \\
& x=51
\end{aligned}
$$

The number is引.

$$
\begin{aligned}
6 x-8=298 & \frac{6 x}{6}=\frac{306}{6} \\
& x=51
\end{aligned}
$$

4. If the quotient of three times a number and four is decreased by three, the result is nine. Find the number.
5. A car rentalagency charges $\$ 180$ per weekplus $\$ 0.25$ per mile to rent acar. $\mathcal{H o w}$ many miles can you travel in one weekfor $\$ 395$?
6. A basketball court is a rectangle with a perimeter of 86 meters. The length is 13 meters more than the width. Find the width and length of the
basketball court.
(1) Analysis
(2) Tans late
ω

$$
86=2(\omega+13)+2 \omega
$$

(3) Solve

$$
P=86 \text { and } P=2 D+2 w
$$

$$
\begin{aligned}
& 86=2(\omega+13)+2 \omega \\
& 86=2 \omega+26+2 \omega \\
& 86=4 \omega+26 \\
& \frac{-26}{60}=\frac{-26}{4}
\end{aligned}
$$

$$
l=\omega+13
$$

$$
\begin{aligned}
& \frac{60}{4}=\frac{4 \omega}{4} \\
& 15=\omega \\
& l=\omega+13 \\
& l=15+13=28
\end{aligned} \quad \begin{aligned}
& \text { The width } \\
& \text { is } 15 \mathrm{~m} \text { and } \text { the } \\
& \text { length } 282 \mathrm{~m}
\end{aligned}
$$

7. This year's salary, \$42,074, is a 9% increase over last year's salary. What was last year's salary?

(4) Conclusion Last year's salary was $\$ 38600$.
8. A repair bill on a sailboat came to $\$ 1603$, including $\$ 532$ for parts and the remainder for labor. If the cost of labor is $\$ 35$ per hour, how many hours of labor did it take to repair the sailboat?

(4) Conclusion

It took $30 \frac{3}{5} \mathrm{hs}$ of labor to repair the sailboat.

Section 2.6: PRO $\mathcal{B L E M} S O L V I \mathcal{N} G I \mathcal{N} G \mathcal{E} O \mathcal{M E T R V}$
When you are done with your homework you should be able to...
π Solve problems using formulas for perimeter and area
π Solve problems using formulas for a circle's are a and circumference
π Solve problems using formulas for volume
π Solve problems involving the angles of a triangle
π Solve problems involving complementary and supplementary angles
WARS- UP:
Solve:
After 30% reduction, you purchase a $\mathcal{D V D}$ player for $\$ 98$. What was the selling price before the reduction?

$$
\left.\begin{array}{rl}
A & =P \cdot B \\
98 & =709 \cdot B \\
98 & =\frac{0.70 B}{0.70}
\end{array}\right\} 140=B
$$

$\mathcal{C O M M O} \mathcal{N} \mathcal{F O R M U L A S ~ F O R} \operatorname{PERI} \operatorname{MEIER} \mathcal{A N D} \mathcal{A R E A}$

Example 1: Solve.

1. A triangle has a base of 6 feet and an area of 30 square feet. Find the triangle's height.

$$
\begin{aligned}
& \text { base }=6 \mathrm{ft} \\
& \text { area }=30 \mathrm{ft}^{2} \\
& A_{\Delta}=\frac{1}{2} \mathrm{bh}
\end{aligned}
$$

$$
30=\frac{1}{2} \cdot 6 \cdot h
$$

$$
\frac{30}{3}=\frac{3 h}{3}
$$

$$
10=h
$$

2. A rectangle has a width of 46 cm and a perimeter of 208 cm . What is the

$$
\begin{array}{ll}
\omega=46 & 208=2(46)+2 \cdot l \\
\rho=208 & 208=92+2 l \\
\rho=2 \omega+2 l & \frac{-92}{\frac{116}{2}}=\frac{-92}{2 l}
\end{array}
$$

- $58=l$ The length is 58 cm .

3. Find the are a of the trapezoid.

$$
\begin{aligned}
& A=\frac{1}{2}\left(b_{1}+b_{2}\right) \cdot h \\
& A=\frac{1}{2}(5+8) \cdot 4 \\
& A=\frac{1}{2} \cdot 13 \cdot 4 \\
& A=26 \mathrm{~cm}^{2}
\end{aligned}
$$

GEOMETRIC FORMULAS FOR CIRCUMFERENCE $\mathfrak{A N D}$ AREA OF A CIRCLE A \qquad circle is the sec of att -points. \qquad in the -plane equally dis ant from a giver point, its _- Center \qquad a radius \qquad pplurat_-_radii \qquad), r __ is a afire \qquad segment from the --center \qquad to any point on the _circle \qquad For a given circle, -all \qquad radii fave the same \qquad length -- diameter ----
\qquad _d_ is a-_line_s segment through the _center \qquad whose endpoints
 thee - Same \qquad trust. In any icicle, the e engstio of a -- diameter
\qquad is twice \qquad the enngtio of a _radius rat iv
\qquad is ---half the length of a and the elengtit of a radius \qquad

Area
$A=\pi r^{2}$ units squared
Circumference
$C=2 \pi r$ units

$$
o r
$$

$C=\pi d$ units

1. Find the area and circumference of a circle which has a diameter of 40 feet.
$A=\pi r^{2} \rightarrow d=40$ and $d=2 r \quad C=\pi \cdot d$
So $\quad \begin{aligned} & \frac{2 r}{2}=\frac{40}{2} \\ & A=\pi(20)^{2} \\ & A=400 \pi \mathrm{ft}^{2} \\ & A \approx 125.6 \mathrm{ft}^{2} \\ & \text { exact } \\ & \text { approximate }\end{aligned}$

$$
c=\pi \cdot 40
$$

$$
c=40 \pi \mathrm{ft} \text {-exact }
$$

$$
C \approx 125.7 \mathrm{ft} \text { —approximbe }
$$

2. Which one of the following is a better buy: a large pizza with a 16 -inch diameter for $\$ 12$ or two small pizzas, each with a 10 -inch diameter, for $\$ 12$?

$$
\begin{aligned}
& \frac{\text { Large pizza }}{d=16 \rightarrow r=\frac{1}{2}(16)=8} \\
& A=\pi(8)^{2} \\
& A=64 \pi \mathrm{in}^{2} \\
& A \approx 20.1 \mathrm{in}^{2}
\end{aligned}
$$

Small pizza

$$
\begin{array}{ll}
d=10 \rightarrow r=\frac{1}{2}(10)=5 & \frac{2 \text { smalls }}{2\left(788 \sin ^{2}\right)} \\
A=\pi(5)^{2} \\
A=2 \pi)^{2} & =157.1 \mathrm{in}^{2}
\end{array}
$$

The large pizza is the petter bay.

-Volume ---- refers to the amount of _-Space -- occupied by a
3 \qquad dimensional figure. To measure this space, we use cubic units.
cube

rectangular Solid
 units cured

right
circular cylinder
 arculal cone

$$
V=\frac{4}{3} \pi r^{3} \text { units }
$$

Example 3: Solve.

$$
V=\frac{1}{3} \pi r^{2} h
$$

1. Solve the formula for the volume of a cone for h.

$$
\begin{aligned}
& 3(V)=\left(\frac{1}{3} \pi r^{2} h\right) 3 \\
& \frac{3 V}{\pi r^{2}}=\frac{\pi r^{2} \cdot h}{\pi r^{2}}
\end{aligned} \quad \begin{aligned}
& \frac{3 V}{\pi r^{2}}=h \\
& \frac{\pi \text { CRATED BYSAANNONMARTNGRACEY }}{}=\frac{3 V}{\pi r^{2}}
\end{aligned}
$$

2. A cylinder with radius 2 inches and height 3 inches has its radius quadrupled. $\mathcal{H o w}$ many times greater is the volume of the larger cylinder than the smaller cylinder?
3. Find the volume of a shoebox with dimensions 6 in $x 12$ in $x 5$ in.
$V=l \cdot \omega \cdot h$
$v=12.6 .5$
$v=360 \mathrm{in}$

 that have a common_ endpoint_-_. The common endpoint is called the __- Veltex___-_The two rays that form the angle are called its \qquad

vertex

$$
A+B=90^{\circ}
$$

$$
A+B=180^{\circ}
$$

Example 4: Solve.

1. One angle of a triangle is three times as large as another. The measure of
the third angle is 40° more than that of the smallest angle. Find the measure of each angle.
(1) Analysis

Let x bethe smallest x
(2) Translate
$x+3 x+x+40=180$
2. Find the measure of the
(3) Solve

$$
x+3 x+x+40=180
$$

$$
\begin{aligned}
& 5 x+40=180 \\
& 50
\end{aligned}
$$

$$
\begin{array}{r}
5 x+40 \\
-40 \\
\hline
\end{array}
$$

 6. 89.5°
$A+B=90$

$$
A+B=90
$$

$$
A+56=90
$$

$$
A+89.5=90
$$

$$
\begin{aligned}
89.5 & =90^{\circ} \\
A & =0.5^{\circ}
\end{aligned}
$$

a. 177°
$A+B=180$

$$
\begin{aligned}
& A= \\
& =180 \\
& =180
\end{aligned}
$$

$$
\begin{aligned}
A+177 & =180 \\
A & =13^{\circ}
\end{aligned}
$$

$$
A=3_{\text {Sind the mead }}^{3^{0}}
$$

4. Sind the me assure of the angle described.

The measure of the angle's supplement is 52° more than twice that of comp foment.
Let the angle be A
comp: $A+B=90 \rightarrow B=90-A$
supp: $A+B=180 \rightarrow B=180-A$

$$
\begin{gathered}
180-A=2(90-A)+52 \\
180-A=180-2 A+52 \\
+2 A+2 A \\
A=52^{\circ}
\end{gathered}
$$

Example 5: Find the area of the shaded region.

$r=8$ in

$$
A_{\text {shaded }}=A_{\text {circle }}-A_{\text {square }}
$$

$$
\begin{aligned}
& =\pi r^{2}-s^{2} \\
& =\pi(8)^{2}-(12)^{2} \\
& =(64 \pi-144) \mathrm{in}^{2}
\end{aligned}
$$

Section 2.7: SOLVING LINEEARINXEQALITIES
When you are done with your home work you should be able to...
π Graph the solutions of an inequality on a number line
π Use interval notation
π Understand properties used to solve line ar inequalities
π Solve line ar inequalities
π Identify inequalities with no solution of infinitely many solutions
π Solve problems using line ar ne qualities
\mathcal{W} ARM- UP:
Solve:
Find the volume of a sphere with diameter 11 meters.

VO CABULARY
Sine ar inequality in one variable: A_{n} inequality in the form $a x+b<c$, $a x+b \leq c \quad a x+b>c \quad$ or $a x+b \geqq c$ is a linear inequality in one variable. \qquad means less than
 to.

Solving an inequality: The process) of finding the Set_-_ of _ numbers._- that will make the inequality a true \qquad statement. These numbers are called the solutions of the inequality, and we say they satisfy the inequality. \qquad . The Set \qquad of __all solutions is called the solution set of the inequality.

GRAPHS Of INEQUALITIES
There are \square infinitely many \qquad solutions to the one quality $x>5$. In other words, the solution set for this in quality is all_real \qquad numbers which are greater than \qquad . Can we list all these numbers? What does the graph of the solution set look like? Hamm... set-builder:
 $\{x \mid x>5\}$ interval: $(5, \infty)$
Graphs of _Solutions -- to linear --- inequalities are
 representitug mutterer stat are - Solutions -- Square Sue -point
 ant - parentheses () , indicate endpoint sot that are not --Soluti ono Set-builder: $\{x \mid x \leq 6\}$ Example 1: Graph the solutions of each inequality. interval: $(-\infty, 6]$

set-builder: $\left\{x \left\lvert\, x>-\frac{3}{2}\right.\right\}$ interval: $\left(-\frac{3}{2}, \infty\right)$

c. $-\frac{3}{2}<x \leq 6$

Sef-puilder: $\left\{x \left\lvert\,-\frac{3}{2}<x \leq 6\right.\right\}$
$x>-\frac{3}{2}$ and $x \leq 6$
interval: $\left(-\frac{3}{2}, 6\right.$]

SOLUTIONS SETS OF INEQUALITIES

$\mathscr{P A R E X I H E S}$ IS $\mathcal{A R E}$ ALWAyS USED $\mathcal{W I T H}_{1}$ _ ∞

1. Simplify the algebraic -expression on each side.
2. use the _addition property of _-inequality__-_ to vole ct all the _Variable _or terms on one side and all the constant terms on the other side.
3. use the multiplication property of _- inequality --- to isolate -- the _variable and _Solve Change -- the direction of the -inequality -- ween -multiplying --- or -- dividing _------ both sides by a negative --- number.
4. Express the Solution --- set in interval or set.
-builder- not aton, and - - graph --- the solution set on a
number \qquad line.

Example 2: Solve each inc quality and graph the solution.
a. $x-3 \leq 2 \quad x \leq 5$

Set-builder: $\{x \mid x \leq 5\}$ interval: $(-\infty, 5]$

$$
\begin{aligned}
& -5 x+8>2 x-7 \\
& \frac{-8}{-5 x}>\frac{-8}{2 x-15} \\
& -2 x \\
& -2 x
\end{aligned} \quad \begin{aligned}
& \frac{-7 x}{-7}>\frac{-15}{-7} \\
& x<\frac{15}{7}
\end{aligned}
$$

$$
\text { c. } 4 \widehat{(x+1) \geq 3 x+6}
$$

Set -builder: $\left\{x \left\lvert\, x<\frac{15}{7}\right.\right\}$

$$
\left.\begin{array}{l}
\begin{array}{r}
4(x+1) \geq 3 x+6 \\
4 x+4 \geq 3 x+6 \\
-3 x \\
-3 x
\end{array}
\end{array}\right\} \begin{array}{r}
x+4 \geq 6 \\
-4 \geq 2 \\
x \quad-4
\end{array}
$$

interval: $\left(-\infty, \frac{15}{7}\right)$
set-builder: $\{x \mid x \geq 2\}$ interval: $[2, \infty)$

Recognizing inequalities with no solution orinvinuitely MaNE solutions
If you attempt to solve an inequality with no solution or one that is --true for -- every --- real number, you will eliminate the variable
π an in quality with no solution
\qquad rests in a-false

\qquad O. the -empty_- set, and the graph_-_ is an unshaded number line.
π An inequality that is true for every real \qquad number results in a tue__ statement, such as $0 \leq 0$. The solution set is $(-\infty, \infty)$ or $\{x \mid x$ is a real number $\}$, and the graph is a fully -Shaded \qquad number \qquad line

Example 3: Solve each inequality and graph the solution.
a. $2(x+1)-1<2 x+1$
$2 x+2-1<2 x+1$
$2 x+1<2 x+1$

Set-builder: $\}$ interval: ϕ

On three examinations, you have grades of $\mathbf{8 8}, 78$, and 86 . There is still a final examination, which counts as one grade.

1. In order to get an \mathcal{A}, your average must be at le as 90 . If you get 100 on the final, compute your ave rage and determine if an \mathcal{A} in the course is possible.

$$
\text { Average }=\frac{352}{4}=88 \text {. }
$$

$$
\frac{100}{352}
$$

An Ais not possible.
2. To earn a \mathcal{B} in the course, you must have a final ave rage of at le as 80 . What must you get on the final to earn a \mathcal{B} in the course?
Let x be the grade earned on the final.

$88+78+86+x \geq 320$

$$
\begin{array}{r}
252+x \geq 320 \\
-252 \quad-252 \\
\hline
\end{array}
$$

$$
x \geq 68
$$

you must earn at least a 68 on the final to get $a B$ in the course.

When you are done with your home work you should be able to...
π Plot ordered pairs in the rectangular coordinate system
π Find coordinates of points in the rectangular coordinate system
π Determine whether an ordered pair is a solution of an equation
π Find solutions of an equation in two variables
π Use point plotting to graph line ar equations
π Use graphs of line ar equations to solve problems
\mathcal{W} ARM- UP:

1. Find the volume of a box with dimensions $1 / 2 f t$ by 3 ft by 8 ft .

$$
\begin{aligned}
& V=l w h \\
& V=(8)(3)\left(\frac{1}{2}\right)
\end{aligned} \quad V=12 \mathrm{ft}^{3}
$$

2. Solve the following inequalities and graph the solution sets.

$\mathcal{P O} I \mathcal{N I S} \mathcal{A N} \mathcal{D} O R \mathcal{D E R E D} \mathcal{P A I R S}$
The ide a of visualizing equations as geometric figures was developed by the
French philosopher and mathematician \qquad Rene --. Descartes Descartes_-_-... ruths ide a is titis -rectangular-- coordinate --- system or or tic - Cartesian ---coordinate system. The rectangular coordinate system consists of 2 2 number \qquad lines that \qquad intersect at right _angles \qquad at the ir __Zero \qquad points. The horizontal number line is the __x_axis \qquad and the vertical number line is the \qquad _-_. The point of intersection is a _point \qquad called the --origin
\qquad gin___. Pos it five
 numbers are to the \qquad and - down into---- - --- regions, called_quadants_--. The points located on the axes
\qquad are not \qquad in any quadrant. Each -point
to an ordered in the rectangular coordinate system \qquad Corresponds--
(x, y))- The first the origin. The _axes divide the - Plane ---
\qquad ,
\qquad down ----
\qquad -ardra-----pain
\qquad of raf numbers, pair
\qquad number in e act pair, called the \mathcal{X}-coordinate - denotes the - distance and_difection
\qquad from the origin
\qquad along the $x=-a x$ is s \qquad . The second number, called the - y-coordinate
distance along a__ line e parallel alice

$$
x-a \times 15
$$

$$
(0,0) \text { (origin) }
$$

Example 1: Plot the following ordered pairs.
$(2,5),(-3,7),(-2,-4)$

$(2,5)$	2 units to the right and 5 units up
$(-3,7)$	3 units to the left and 7 units up
$(-2,-4)$	2 units to the left and 4 units down

SOLUTIONS OF EQUATIONS IN TWO VARIABLES
a - Solution \qquad of an -equation \qquad in _ 2 _- variables, χ^{x} and $y_{--, \text {is an }}$ \square _ordered par \qquad of real numbers with the following property: When the x-coordinate \qquad is substituted for _ X__ and the $-y$ =coordinate is substituted for $-y$-- in the equation, we ob tain a - - Cue_- state me nt.

Example 2: Determine whether each of the given points is a solution of the equation $8 x+y=1$.

$$
\begin{align*}
& \text { Example 3: Find three solutions of } 2 y=-x-1 \text {. } \\
& \text { (1) Let } x=1: \quad 2 y=-(1)-1 \quad \text { (2) Let } x=5: \quad 2 y=-(5)-1 \text { (3) Let } y=0 \text {; } \\
& (1,-1) \quad \begin{aligned}
2 y & =-2 \\
y & =-1
\end{aligned} \\
& \begin{array}{l}
2 y=-6 \\
y=-3
\end{array} \tag{5,-3}\\
& \begin{aligned}
2(0) & =-x-1 \\
0 & =-x-1
\end{aligned} \\
& \text { GRAPHING } \angle I \mathcal{N E E A R} \text { EQUATIONS IN } \mathcal{T H E} \mathcal{F O R M} y=m x+b
\end{align*}
$$ The -graph of the equation _-- is the -Set_-- of all_ points whose __CDordinates_s satisfy the equation.

 $\mathfrak{E Q U A T I O N} I \mathcal{N} \mathcal{T} W O$ VARIABLES

1. Find several_ Ordered \qquad -pairs \qquad that are --Solutions of the equation.
2. Plot the se ordered pairs as \qquad points in the rectangular coordinate system.
3. - (on \qquad the points with a Smooth \qquad curve or byline depending on the type of equation.

Example 3: Graph the following equations by plotting points.
a. $y=2 x$

x	$y=2 x$	(x, y)
4	$y=2(4) \rightarrow y=8$	$(4,8)$
3	$y=2(3) \rightarrow y=6$	$(3,6)$
2	$y=2(2) \rightarrow y=4$	$(2,4)$
0	$y=2(0) \rightarrow y=0$	$(0,0)$
5	$y=2(-5) \rightarrow y=-10$	$(-5,-10)$

6. $y=-3 x+9$

x	$y=-3 x+9$	(x, y)
10	$y=-3(10)+9 \rightarrow y=-21$	$(10,-21)$
5	$y=-3(5)+9 \rightarrow y=-6$	$(5,-6)$
3	$y=-3(3)+9 \rightarrow y=0$	$(3,0)$
0	$y=-3(0)+9 \rightarrow y=9$	$(0,9)$
12	$y=-3(-2)+9 \rightarrow y=15$	$(-2,15)$

c. $y=\frac{2}{5} x+3$

x	$y=\frac{2}{5} x+3$	(x, y)
-10	$y=\frac{2}{5}(-10)+3 \rightarrow y=-4+3 \rightarrow y=-1$	$(-10,-1)$
-5	$y=\frac{2}{15}(-5)+3 \rightarrow y=-2+3 \rightarrow y=1$	$(-5,1)$
0	$y=\frac{2}{5}(0)+3 \rightarrow y=0+3 \rightarrow y=3$	$(0,3)$
5	$y=\frac{2}{15}(18)+3 \rightarrow y=2+3 \rightarrow y=5$	$(5,5)$
10	$y=\frac{2}{8}(x)+3 \rightarrow y=4+3 \rightarrow y=7$	$(10,7)$

If the value of _M_- does not change,
 b_units_-up_when_b_is a positive number.
 b_{-}units dawn when_ \quad _ is a negative number.

Let $m=1$ so $y=m x \rightarrow y=x$
Let $b=4, m=1 \vec{y} y=m x+b \rightarrow y=x+4$

In 1960 , per capita fist consumption was 10 pounds. This increased by approximately 0.15 pound per year from 1960 through 2005 . These conditions can be described by the mathematical model $F=0.15 n+10$, where \mathcal{F} is per capita fish \mathcal{H} consumption n years after 1960.
a. Let $n=0,10,20,30$, and 40. Make a table of values showing five solutions of the equation.

n	$F=0.15 n+10$	(n, F)
0	$F=0.15(0)+10 \rightarrow F=10$	$(0,10)$
10	$F=0.15(10)+10 \rightarrow F=11.5$	$(10,11.5)$
20	$F=0.15(20)+10 \rightarrow F=13$	$(20,13)$
30	$F=0.15(30)+10 \rightarrow F=14.5$	$(30,14.5)$
40	$F=0.15(40)+10 \rightarrow F=16$	$(40,16)$

6. Graph the formula in a rectangular coordinate system.

c. Use the graph to estimate per capita fish consumption in 2020.

$$
F=19
$$

d. Use the formula to project per capita fish consumption in 2020.

$$
\begin{aligned}
& F=0.15(n)+10 \\
& F=0.15(60)+10 \\
& F=19
\end{aligned}
$$

Section 3.2: GRAPHING LINEAR EQ UATIO NS ULS ING INTERCEPIS When you are done with your homework you should be able to...
π Use a graph to identify intercepts
π Graph a line ar equation in two variables using intercepts
π Graph horizontal or vertical lines
$\mathcal{W} \mathcal{A R} \mathcal{M}-\mathcal{U l} P:$

Graph the following equations by plotting points.
a. $y=-x$

x	$y=-x$	(x, y)
1	$y=-1$	$(1,-1)$
3	$y=-3$	$(3,-3)$
5	$y=-5$	$(5,-5)$

6. $y=\frac{2}{3} x-7$

$\operatorname{INTERCEPTS}$
an_x_intercept_- of a graph is the χ _coordinate of a point where the graph \qquad intersects the $x=a x i s$ The -y-coordinate corresponding to an \qquad x-intercept is always \qquad O !!!
\qquad of a graph is the $y=$ coordinate of a point where the grape in intersects \qquad -the y-axis The x-coordinate corresponding to a y-intercept is always \qquad O !!!
Example 1: Use the graph to identify the
a. χ-intercept
7. y-intercept

Approx: $(1.8,0)$

GRAPHING USING INTERCEPTS
ane equation of fie form $A x+B y=C \quad A_{1} \quad B_{\text {af e }}$ integers, is called the Standard_- form of a line.

Steps for using intercepts io graph $A x+B y=C$

1. Find the \qquad
x-intercept Let $-y=0$ \qquad and solve for χ \qquad
2. sind the $-y$-intercept \qquad Let \qquad $x=0$ and solve for $-y$.
3. Find a checkpoint, a \qquad 3 rd ordered-pair Solution
4. Graph the equation by drawing a \qquad line through the 3 3 points.

Example 2: Graph using intercepts and a checkpoint.
a. $x+y=6$

6. $3 x-2 y=-7$

$$
\begin{aligned}
& \begin{array}{l|l}
3 x-2 y=-7 & (x, y)
\end{array} \\
& y=0 \quad 3 x-2(0)=-7 \rightarrow 3 x=-7 \rightarrow x=-\frac{7}{3} \quad\left(-\frac{7}{3}, 0\right) \\
& y-x^{\prime \prime} x=0 \quad 3(0)-2 y=-7 \rightarrow-2 y=-7 \rightarrow y=\frac{7}{2} \quad\left(0, \frac{7}{2}\right) \\
& x=1 \quad 3(1)-2 y=-7 \rightarrow 3-2 y=-7 \rightarrow-2 y=-10 \rightarrow y=5 \\
& \begin{array}{l}
\begin{array}{l}
3 x=-7 \\
3 \\
x=-7 / 3
\end{array}
\end{array}>x=-\frac{7}{3}
\end{aligned}
$$

$\mathcal{E Q U A T I O N S}$ OF $\mathcal{H O R I Z O N T A L ~} \mathcal{A N} \mathcal{D} \operatorname{VERT}$ ITAL LIN XES
We know that the graph of any equation of the form $A x+B y=C$ _- line \qquad as long as _ A_{-}and _ $B_{\text {_ are }}$ not 60 th_ $O_{\text {_ }}$. What happens if _A_ or B_{--}, but not both, is zero?

HORIZONTAL AND VERTICAL LINES
The graph of $y=b \quad-\quad$ is a horizontal line. The $-y$-intercept is $(0, b)$
\qquad
\qquad

The graph of $x=a \quad$ is a vertical line. The x-intercept is $\left(a_{y}, 0\right)$

Example 3: Graph.
a. $y=8$

$$
\text { 5. } \begin{aligned}
\frac{12 x}{12} & =\frac{-60}{12} \\
x & =-5
\end{aligned}
$$

Example 4: Write an equation for each graph.

6 .

$\mathcal{A P P L I C A T I O \mathcal { N }}$
A new car worth $\$ 24,000$ is depreciating in value by $\$ 3000$ per year. The mathematical model $y=-3000 x+24000$ describes the car's value, y, in dollars, after χ years.
a. Find the χ-intercept. Describe what this means in terms of the car's value. Let $y=0$

$$
\begin{aligned}
3000 x & =24000 \\
x & =8
\end{aligned}
$$

6. Find the y-intercept. Describe what this means in terms of the car's value. Let $x=0$

$$
\begin{aligned}
& y=-3000(0)+24000 \\
& y=24000
\end{aligned}
$$

When the car is brandrew, it

$$
\text { is worth } \$ 24000 \text {. }
$$

monetary value.
After 8 years the car has no
c. Use the intercepts to graph the line ar equation.

$$
\left.\frac{\$ 24000}{y(n+t h a b a n d t}\right)
$$

y (inthasiond

d. The your graph to estimate the car's value after five years.

$$
\$ 9,000
$$

Section 3.3: SLOPE
When you are done with your home work you should be able to...
π Compute a line's slope
π Ulse slope to sfow that lines are parallel
π Ulse slope to sfow that lines are perpendicular
π Calculate rate of change in applied situations
$\mathcal{W} \mathcal{A R M}-\mathcal{Z l} P:$
Grapheachequation.
a. $y-2=0$
6. $-2 x-3 y=9$

	$-2 x-3 y=9$	(x, y)

$\mathcal{T H E} S \mathcal{L O P E} O \mathcal{F} \mathcal{A} \mathcal{L I} \mathcal{N E}$

Mathematicians have developed a useful \qquad mecoure of the
Steepness \qquad of a line, called the \qquad of the line. Slope compares the -vertical \qquad change (the \qquad rise) to the _-hocizontal_c change (the run__-_ when moving from one fixed _point to another along the line.
$\mathcal{D E F I} \operatorname{NLITION} O \mathcal{F} \operatorname{SLOPE}$
The Slope__of of the line through the distinct points $\left(x_{1}, y_{1}\right)_{-}$and $\left(x_{2}, y_{2}\right)$ \qquad is

$$
\begin{aligned}
& m=\frac{\text { change in } y}{\text { change in } x} \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

where $-x_{2}-x_{1}=0$ \qquad to represent the slope of a line. This letter is used because it is the first letter of the French verb 6 monter, meaning to rise, or to ascend.

Example 1: Find the slope of the line passing through each pair of points:
a. $(-1,4)$ and $(3,-6)$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-6-4}{3-(-1)} \\
& m=\frac{-10}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. }\left(8, \frac{3}{2}\right) \text { and }\left(-\frac{5}{2}, 7\right) \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{\frac{14-3}{2}}{-\frac{2}{2}-\frac{5}{2}-8 \cdot \frac{3}{2}} \\
& m=\frac{\frac{11}{2}}{-\frac{21}{2}} \\
& m=\frac{11}{2} \cdot \frac{x^{\prime}}{24}
\end{aligned}
$$

CREATED BY SHANNON MARTIN GRACE

$$
m=-\frac{11}{21}
$$

Example 2: Use the graph to find the slope of the line

$$
\begin{aligned}
& m=\frac{-3}{+1} \\
& m=-3
\end{aligned}
$$

S LOPE AND PARALLEL LI $\mathcal{N E S}$
T wo \qquad nonintersecting lines that lie in the same plane are - parallel \qquad . If two lines do not intersect
\qquad , the ratio \qquad of
the \qquad Vertical change to the \qquad horizontal change is the -same \qquad for each \qquad line - Because two parallel lines have the same Steepness re

1. If two nowertar parallel -slope \qquad -.

位 \qquad then they have the same Slope \qquad . /
2. If two dis tinct nonver tical lines have the same - Slope _-- then they are ---parallel \qquad
3. Two dist tinct vertical lines, each with undefined slope, are -paralleL \qquad

sLope ax id pexpevidiculax Lives
 (90°) are said to be per pendicular \qquad

1. If two nonvertical lines are perpendicular, then the product of their \qquad is -- 1
2. If the - product of the Slopes
 then the lines are perpendicular
3. A-horizontal \qquad line having Zero \qquad slope is
 \rightarrow perpendicular to a vertical line having _undefined_-_ slope.

Example 3: Determine whether the lines through each pair of points are parallel, perpendicular, or neither.
a. $(-2,-15)$ and $(0,-3) ;(-12,6)$ and $(6,3)$

$$
\begin{aligned}
& \begin{array}{l|l}
m_{1}=\frac{-3-(-15)}{0-(-2)} & m_{2}=\frac{3-6}{6(-12)} \\
m_{1}=\frac{12}{2} & m_{2}=\frac{-3}{18} \\
m_{1}=6 & m_{2}=-\frac{1}{6}
\end{array} \\
& \text { - not parallel since } m_{1} \neq m_{2} \\
& \text { - is } m_{1} m_{2} \stackrel{?}{=}-1 \\
& 6\left(-\frac{1}{6}\right)^{\stackrel{?}{=}}-1 \\
& -1=-1 \text { yes so the helper linedicular }
\end{aligned}
$$

6. $(-2,-7)$ and $(3,13) ;(-1,-9)$ and $(5,15)$

$$
\begin{array}{l|l|l|}
\begin{array}{l}
m_{1}=\frac{13-(-7)}{3-(-2)} \\
m_{1}=\frac{20}{5}
\end{array} & \begin{array}{ll}
m_{2}=\frac{15-(-9)}{5-(-1)} & m_{1}=\frac{24}{6} \\
m_{1}=4 & \text { so the lines are parallel } \\
m_{2}=4 & \\
m_{1}=\frac{-5-(-11)}{0-(-1)} & \begin{array}{ll}
m_{2}=\frac{-6-(-8)}{12-0} & m_{1} \neq m_{2} \rightarrow \text { not parallel } \\
m_{1}=\frac{6}{1} & m_{2}=\frac{2}{12}
\end{array} \\
m_{1}=6 & m_{1} m_{2} \neq-1 \rightarrow \text { not perpendicular } \\
m_{2}=\frac{1}{6} & \text { neither }
\end{array}
\end{array}
$$

Construction laws are very specific when it comes to access ramps for the disabled. Every vertical rise of 1 foot requires a horizontal run of 12 feet. What is the grade of such a ramp? Round to the nearest tenth of a percent.

$$
\begin{aligned}
& m=\frac{\text { rise }}{r u n} \\
& m=\frac{1 \mathrm{ft}}{12 f t} \\
& m=\frac{1}{12} \\
& m \approx 0.0833 \\
& m \approx 8.3 \%
\end{aligned}
$$

The grade of the ramp should be 8.3\%.

Section 3.4: THE S LOPE-I NTERCEPI FORM Of THE EQ UATIONOFALINEE When you are done with your home work you should be able to...
π Find a line's slope and y-intercept from its equation
π Graph lines in slope-intercept form
π Use slope and y-intercept to graph $A x+B y=C$
π Use slope and y-intercept to model data
$\mathcal{W} \mathcal{A R M}-\mathcal{U l}:$
Graph each equation.
a. $4 x-8 y-2=0$

6. The line which passes through the points $(-1,2)$ and $(3,0) \cdot y$

The _Slope ----- intercept ---- form of the equation of a nonvertical line with slope_ m and y _intercept b is

$$
\begin{aligned}
& y=m_{\uparrow} x+b \\
& \quad \uparrow \quad(0, b) \text { is the } \\
& \text { slope } \quad y \text {-intercept } \\
& \text { slope and the } 4 \text { - intercept ot the lire }
\end{aligned}
$$

Example 1: Find the slope and the y-intercept of the line with the given equation:
a. $y=-4 x-1$

$$
y=-4 x+(-1)
$$

$$
m=-4
$$

$$
\frac{m=\operatorname{int}:(0,-1)}{y=\frac{5}{x+2}}
$$

$$
\text { c. } y=\frac{3}{7} x+2
$$

$$
m=\frac{5}{7}, y \text {-nt: }(0,2)
$$

$$
\begin{gathered}
\text { 6. } 6 x-y=-1 \\
(-1)(-y)=(-6 x-1)(-1) \\
y=6 x+1 \\
m=6, y-\text { int: }(0,1) \\
\text { d. } y=-\frac{x}{3}+\frac{2}{3} \\
m=-\frac{1}{3}, y-\text { int: }\left(0, \frac{2}{3}\right)
\end{gathered}
$$

Example 2: Use the graph to find the equation of the line in slope-intercept form.

$$
\begin{aligned}
& m=\frac{-3}{+1} \\
& m=-3 \\
& y \text {-int: }(0,5) \\
& y=m x+b \\
& y=-3 x+5
\end{aligned}
$$

$\mathcal{G R A P H} I \mathcal{N} G \mathcal{B Y}$ USS INN G $y=m x+b \quad$ SLOPE $\mathcal{A N D} \mathbf{Y}-I \mathcal{N T I E R C E P I}$

1. Plot the point containing the - This is the point $(0, b)$
 M_{-}as a fraction and use rise over_fMn. starting at the - y-intercept._.
2. use a Straight Sedge -- to draw a --- line ---- through the two -points \qquad at the -ends of the line to show that the line continues \square indefinitely in both directions.

Example 3: Graph using the slope and y-intercept.

$$
m=-5 \rightarrow m=\frac{-5}{+1}
$$

$$
y \text {-int: }(0,3)
$$

$$
\begin{aligned}
& \text { 6. } 10 x-5 y=25 \\
& \frac{-5 y}{-5}=\frac{-10 x+25}{-5} \\
& y=2 x-5 \\
& m=2 \rightarrow m=\frac{+2}{+1} \\
& y \text {-int: }(0,-5)
\end{aligned}
$$

$$
\begin{aligned}
\text { c. } x & =2 y-3 \\
-2 y+x & =-3 \\
\frac{-2 y}{-2} & =\frac{-x-3}{-2} \Rightarrow \frac{-1}{2}(-2 y)=-\frac{1}{2}(-x-3) \\
y & =\frac{1}{2} x+\frac{3}{2} \\
m=\frac{1}{2} & \rightarrow m=\frac{+1}{+2} \text { upl right } 2
\end{aligned}
$$

$$
\begin{gathered}
\left.\begin{array}{c}
(-1)(1) \\
d . y) \\
y=(x-1)(-1) \\
y
\end{array}\right)=-x+1 \\
m=-1 \rightarrow m=\frac{-1}{+1} \\
y \text {-int: }(0,1)
\end{gathered}
$$

$$
\begin{aligned}
& \text { e. } y=-\frac{6}{7} x+4 \\
& m=-\frac{6}{7} \rightarrow m=\frac{-6}{77} \\
& y \text {-int: }(0,4)
\end{aligned}
$$

Write an equation in the form of $y=m x+b$ of the line that is described.

1. The y-intercept is -4 and the line is parallel to the line whose equation is
$2 x+y=8$:
use his line to find out the ip e

$$
P_{2 x+y}^{\prime}=8
$$

$$
m=-2
$$

parallel lines have the same slype. So
we use $m=-2$ and $b=-4$ to make

$$
y=-2 x+8
$$

the equation for ow r line.

$$
\begin{aligned}
& y=m x+b \\
& y=-2 x+(-4) \\
& y=-2 x-4
\end{aligned}
$$

2. The line falls from left to right. It passes through the origin and a second
point with opposite x - and y-coordinates.
negative slope

$$
\begin{aligned}
& m=\frac{-1-0}{1-0} \\
& m=-1
\end{aligned}
$$

$$
\begin{aligned}
& (0,0) \quad m=\overline{1-0} \\
& m=-1 \\
& y=-x+0 \\
& y=-x
\end{aligned}
$$

$$
(-1,1)
$$

When you are done with your home work you should be able to...
π Use the point-slope form to write equations of a line
π Find slopes and equations of parallel and perpendicular lines
π Write line ar equations that model data and make predictions
$\mathcal{W} \mathcal{A R M}-\mathcal{U P}:$

$$
\begin{aligned}
& \operatorname{simplify} \\
& 2-5[2-(7 x+2)]=2-5[2-7 x-2]
\end{aligned}
$$

1. Simplify.

$$
=2-5[0-7 x]
$$

$$
=2-5[-7 x]
$$

$$
=2+35 x
$$

2. Graph the equation using the slope and y-intercept.

$$
\begin{aligned}
& -\frac{x}{3}-\frac{y}{4}=1 \\
& +\frac{x}{3}+\frac{x}{3} \\
& 7 \\
& (-4)\left(-\frac{y}{4}\right)=\left(\frac{x}{3}+1\right)(-4) \\
& y=-\frac{4}{3} x-4 \\
& m=-\frac{4}{3} \rightarrow m=\frac{-4}{+3} \\
& y \text {-int: }(0,-4)
\end{aligned}
$$

$\mathcal{P O I N T}-\mathcal{S} \operatorname{LOPE} \mathcal{F O R M}$
We can use the \qquad Slope of a line to obtain another use full form of the line 's equation. Consider a nonvertical line that haas slope M_{-}and contains the
 the line \qquad - Yep in mind that the point (x, y) \qquad arbitrary
\qquad and is not in one is
position. The point - $\left(x_{1}, y_{1}\right)$ is fixed
\qquad fixed

$$
\begin{aligned}
& \begin{array}{l}
\left(x-x_{1}\right) m=\left(\frac{y-y_{1}}{x-x_{1}}\right)\left(x-x_{1}\right) \\
m\left(x-x_{1}\right)=y-y_{1}
\end{array} \\
& m\left(x-x_{1}\right)=y-y_{1}
\end{aligned}
$$

The point ------ Slope ----- form of the equation

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Example 1: Write the point-slope form of the equation of the line with the given slope that passes through the given point.

win $y=b \begin{aligned} & m=0 ; \\ & y\end{aligned}$

Example 2: Use the graph to find two equations of the line in point-slope form.

$$
\begin{aligned}
\text { 1. } \begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =-3(x-0) \\
\text { 2. } y-y_{1} & =m\left(x-x_{1}\right) \\
y-2 & =-3(x-1)
\end{aligned} \text {) }
\end{aligned}
$$

Now write the slope-intercept form:

$$
\text { 2. } \begin{aligned}
y-2 & =-3(x-1) \\
y-5 & =-3(x-0) \\
y & =-3 x+5 \\
y-2 & =-3 x+3 \\
y & =-3 x+5
\end{aligned}
$$

\qquad
\qquad
\qquad
$\mathcal{E} Q \mathcal{U A} \mathcal{T} I O \mathcal{N} S$ OF $\mathcal{L I N} \mathcal{N E S}$

Recall that parallellines have the \qquad
\qquad Slope \qquad and perpendicular lines fave \qquad Slopes which are -negative -reciprocals_-
Example 3: Use the given conditions to write an equation for each line in point. slope form and slope-intercept form.
a. Passing through $(-2,-7)$ and parallel to the line whose equation is $y=-5 x+4$.
(1) Find slope using the given line $y=-5 x+4$

$$
m=-5
$$

our slope is also -5

$$
\begin{aligned}
& \text { (2) Use } m=-5 \text { and }(-2,-7) \\
& \text { in } y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-7)=-5(x-(-2)) \\
& y+7=-5(x+2) \\
& \text { point }- \text { sloe e form }
\end{aligned}
$$

6. Passing through ($-4,2$) and perpendicular to the line whose equation is

$$
y=-\frac{1}{3} x+7
$$

(1) Find slope wo ing the given line $y=-\frac{1}{3} x+7$

$$
\begin{array}{ll}
\text { given line } y=-\frac{1}{3} x+7 \\
m_{1}=-\frac{1}{3} \\
m_{1} m_{2}=-1
\end{array} \quad \begin{array}{rl}
\left(-\frac{1}{3}\right)\left(m_{2}\right)=-1 & y-(2)=3(x-(-4)) \\
m_{2}=3 & \begin{array}{l}
y-2=3(x+4) \\
\text { point-slope form }
\end{array}
\end{array}
$$

(2) Use $m=3$ and $(-4,2)$ intercept form

$$
\begin{aligned}
& y-2=3(x+4) \\
& y-2=3 x+12 \\
& y=3 x+14
\end{aligned}
$$

Slipe-inter copt form.
Slipe-intercept form
(3) Isolate y to find slope-
(3) Isolate y to find slope-
intercept form intercept form

$$
\begin{aligned}
& y+7=-5(x+2) \\
& y+7=-5 x-10 \\
& y=-5 x-1 \\
& y=\text { slope- intercept form }
\end{aligned}
$$

(1) Find slope wing the
(2) Hoo $m=-\frac{1}{7}$ and $(5,-9)$

$$
\begin{aligned}
& \frac{1+12}{1+14} \\
& \frac{\text { nterepp for }}{x+7 y=12}
\end{aligned}
$$

(3) ISolate y to find slope-

$$
\text { in } y-y_{1}=m\left(x-x_{1}\right)
$$

$\begin{aligned} x+7 y & =12 \quad m=-\frac{1}{7} \\ 7 y & =-x+12\end{aligned}$

$$
\begin{aligned}
& y-(-9)=-\frac{1}{7}(x-(5)) \\
& y+9=-\frac{1}{7}(x-5)
\end{aligned}
$$ intercept form

$$
\begin{aligned}
& y+9=-\frac{1}{7}(x-5) \\
& y+9 \frac{2}{7}-\frac{1}{7} x+\frac{5}{7}
\end{aligned}
$$

$$
y=-\frac{1}{7} x-\frac{58}{7} \quad 73
$$

Section 4.1: SOLVING SYSTEMS OF LINEAREQUATIONS BY GRAPHING When you are done with your home work you should be able to...
π Decide whether an ordered pair is a solution of a line ar system
π Solve systems of line ar equations by grapfing
π Ulse graphing to identify systems with no solution or infinitely many solutions
π Ulse graphs of line ar systems to solve problems
$\mathcal{W A R M}-\mathcal{U P}:$

1. Determine if the given number or ordered pair is a solution to the given equation.
a. $5 x+3=21 ; \frac{18}{5}$
2. $-x+2 y=0 ;(4,1)$
3. Graph the line which passes through the points $(0,1)$ and $(-5,3)$.

SYS TEMS Of LINEAR EQUATIONS AND THEIR SOLUTIONS
We have seen that all in the form are straight \qquad when grapfed. \qquad such equations are called a

 . \mathcal{A} \qquad to a system
of two \qquad equations in two \qquad is an that \qquad
equations in the \qquad
Example 1: Determine whether the given ordered pair is a solution of the system.
a.
$(-2,-5)$
$6 x-2 y=-2$
$3 x+y=-11$
$6 x-5 y=25$
$4 x+15 y=13$

SOLVING LINEARSYSTEMS BY GRAPHING
The _-_-_-_-_-_-_ of a _-_-_-_-_-_-_-_ of two line ar equations in ______-_ variables can be found by \qquad of the in the \qquad rectangular \qquad system. For a system with \qquad solution, the of the point of give the \qquad solution.

STETS FOR SOLVING SYSTEMS OF TWO LINEAR EQUATIONS IN TWO $V \mathfrak{A R I A B L E S}, \mathbf{x} \mathcal{A N D} \mathbf{y}, \mathcal{B Y} G R \mathcal{A P H I N} \mathcal{N}$
1.
2. \qquad the second equation on the \qquad set of
\qquad -
3. If the representing the \qquad -------------
at a \qquad , determine the \qquad of this point of
intersection. The is the \qquad
of the \qquad .
4. \qquad the \qquad in \qquad equations.

Example 2: Use the graph below to find the solution of the system of line ar equations.

Example 3:Solve each system by grapfing. Tlse set notation to express solution sets.
a.

$$
x+y=2
$$

$$
x-y=4
$$

6.

$$
\begin{aligned}
& y=3 x-4 \\
& y=-2 x+1
\end{aligned}
$$

c.

$$
\begin{aligned}
x+y & =6 \\
y & =-3
\end{aligned}
$$

LINEAR SYS TEMS HAVING NO SOLUTIONORINFINITELY MANV SOLUIIONS

We have seen that a \qquad of line ar equations in \qquad variables represents a \qquad of \qquad . The lines either
\qquad at \qquad point, are \qquad , or are . Thus, there are \qquad possibilities for
the \qquad of solutions to a system of two line ar equations.
$\mathcal{T H E} \mathcal{N U M B E R}$ OF SOLUTIONS TO ASYSTEM OF TWO LIXEAR EQUATIONS

\mathcal{N} UMSEER O F S O LUIT I O $\mathcal{N S}$	$\mathcal{W} \mathcal{H A T} \mathcal{T H I S}$ MEANS GRAPHICALLY
Exactly \qquad ordered pair solution.	The two lines \qquad at \qquad point. This is a \qquad system.
--_-_S Slution	The two lines are \qquad $\mathcal{T h}$ is is an \qquad system.
----------------- many solutions	The two lines are \qquad $\mathcal{T h}$ is is a system with \qquad equations.

Example 4: Solve each systemby graphing. If there is no solution or infinitely many solutions, so state. Ulse set notation to express solution sets.
a.

$$
\begin{aligned}
& x+y=4 \\
& 2 x+2 y=8
\end{aligned}
$$

6.

$$
\begin{aligned}
& y=3 x-1 \\
& y=3 x+2
\end{aligned}
$$

c.

$$
\begin{aligned}
2 x-y & =0 \\
y & =2 x
\end{aligned}
$$

\mathcal{A} band plans to record a demo.S tudio \mathcal{A} rents for $\$ 100$ plus $\$ 50$ per four. Studio \mathcal{B} rents for $\$ 50$ plus $\$ 75$ per hour. The totalcost, y, indollars, of renting the studios for x hours can be modeled by the line ar system

$$
\begin{aligned}
& y=50 x+100 \\
& y=75 x+50
\end{aligned}
$$

a. Ulse graphing to solve the system. Extend the x-axis from 0 to 4 and le t each tickmark represent 1 unit (one hour in a recording studio). Extend the y-axis from 0 to 400 and let each tickmarkrepresent 100 units (arental cost of $\$ 100$).

6. Interpret the coordinates of the solution in practical terms.

When you are done with your 4.2 fome workyou should be able to...
π Solve linear systems by the substitution method
π Ulse the substitution method to identify systems with no solution or infinite ly many solutions
π Solve problems using the substitution method
$\mathcal{W} \mathcal{A} \mathcal{R} \mathcal{M}-\mathcal{U P}:$

1. Solve.
$-5 x+3(2 x-7)=x-21$
2. Solve the following system of line ar equations by grapfing. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$
\begin{aligned}
& y=-4 x+6 \\
& y=-2 x
\end{aligned}
$$

Steps for Solving a System of \mathcal{T} wo Linear Equations Containing \mathcal{T} wo Variables by Substitution

1. Solve one of the equations for one of the unknowns.
2. Substitute the expression solved for in S tep 1 into the other equation. The result will be a \qquad equation in \qquad variable.
3. \qquad the line ar equation in one variable found in S te $p 2$.
4. \qquad the value of the variable found in S tep 3 into one of the original equations to find the \qquad of the other
\qquad -
5. Checkyour answer by \qquad the \qquad
\qquad into \qquad of the original equations.

Example 1: Solve the following systems of line ar equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.
a.

$$
\begin{aligned}
& 5 x+2 y=-5 \\
& 3 x-y=-14
\end{aligned}
$$

6 .

$$
\begin{aligned}
& y=5 x-3 \\
& y=2 x-\frac{21}{5}
\end{aligned}
$$

π Suppose you are solving a system of equations and you end up with $5=0 . \operatorname{Th}$ is is a \qquad and yields a result of \qquad or \qquad .

This system consists of two \qquad lines wfich never
\qquad -
π Suppose you are solving a system of equations and you end up with $5=5$ or $\chi=\chi . \mathcal{T h}$ is is an \qquad and yields a result of all
\qquad which are on the \qquad . In other words, the system would have solutions.

This system consists of two lines whichare \qquad .

Example 2: Solve the following systems of line ar equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Grapf the system.
a.
$-x+3 y=4$
$2 x-6 y=-8$

6.

$$
\begin{array}{r}
x-5 y=3 \\
-2 x+10 y=8
\end{array}
$$

$\mathcal{A P P L I C A T I O N S}$

1. Christa is a waitress and collects her tips at the table. At the end of the shift she has 68 bills in her tip wallet, all ones and fives. If the total value of her tips is $\$ 172$, how many of each bill does she have?
(1) Analysis

Let x be the \# of ones
(3) Solve

$$
\begin{aligned}
& x+y=68 \\
& x+5 y=172
\end{aligned}
$$

Let y be the \#of fives
(2)

$$
\begin{aligned}
& \text { Translate } \\
& \begin{array}{l}
x+y=68 \\
1 x+5 y=172
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) ISolate } y \text { ineq.A } \\
& x+y=68 \\
& y=68-x
\end{aligned}
$$

ii) Sub. $y=68-x$
iii) Sub. $x=42$ into eq. A info eq. β

$$
x+y=68
$$

$$
x+5 y=172
$$

$$
\begin{aligned}
42+y & =68 \\
y & =26
\end{aligned}
$$

$$
x+5(68-x)=172 \quad y=26
$$

$$
\begin{array}{r}
x+340-5 x=172 \\
-4 y=-118
\end{array}
$$

(4) Conclusion

$$
-4 x=-168
$$

Christa has 42 ones

$$
x=42
$$ and 26 fives.

2. Melody wishes to enclose a rectangular garden with fencing, using the side of her garage as one side of the rectangle. \mathcal{A} neighbor gave her 30 feet of fencing, and Melody wants the length of the garden along the garage to be 3 feet more than the width. What are the dimensions of the garden?
(1) Analysis

$$
l=w+3
$$

Let w be the width
(2) Translate

$$
h+2 w=30
$$

$$
\begin{aligned}
& P=l+2 \omega \\
& \rho=30
\end{aligned}
$$

Let l be the length

$$
\left.\begin{aligned}
& \text { (3) Solve } \\
& \begin{array}{l}
1+2 \omega=30 \\
l
\end{array} \quad(A) \\
& l=\omega+3
\end{aligned} \quad \begin{aligned}
(B)
\end{aligned} \right\rvert\, \begin{aligned}
\omega+3+2 w & =30 \\
3 w+3 & =30 \\
3 w & =27 \\
\omega & =9
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) Sub } f=\omega+3 \\
& \text { ii) } S u b \cdot w=9 \\
& \text { into eq. } A \\
& l+20=30 \\
& (\omega+3)+2 \omega=30 \quad l=9+3 \\
& w+3+2 w=30 \quad l=12 \\
& 3 w+3=30 \\
& 3 \omega=27 \\
& \omega=9
\end{aligned}
$$

Q Conclusion
The width of the garden is 9 ft and the length is 12 ft.

When you are done with your 4.3 homeworkyou should be able to...
π Solve linear systems by the addition method
π Ulse the addition method to identify systems with no solution or infinitely many solutions
π Determine the most efficient method for solving a line ar system $\mathcal{W} \mathcal{A} \mathcal{R} \mathcal{M}-\mathcal{U l}:$

1. Solve the following system of line ar equations by substitution. S tate whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$
\begin{aligned}
& y=\frac{7}{2} x-3 \\
& y=-4 x+2
\end{aligned}
$$

 The - SWbłtution method is most use ful if one of the equations has an -_1.) _-addition me__-_ meth. The addition me thod _eliminates__-_ a variable by adding_-_---- the equations. When we use the addition method, we want to obtain two equations whose_Sum- is an equation containing
only__ variable. The key step is to obtain, for one of the variables,
coefficients that differ only in _ Sign
\qquad .

Steps for Solving a System of \mathcal{T} wo Linear Equations Containing \mathcal{T} wo Variables by $\mathcal{A d d i t i o n}$

1. If necessary, rewrite
\qquad both equations in the form

2. If necessary, multiply multiply either equation or both equations by appropriate nonzero numbers so that the _SWM_-_ of the x-coefficients or y-coefficients is \qquad zero \qquad in- Solve \qquad variable.
3. \qquad the equation in one variable.
4. \qquad
 the Original-- equations and -Solv e---for the other variable.
5. Check -- the sortition in BoOTH

Example 1: Solve the following systems of line ar equations by the addition me trod. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use
set notation to express solution sets.
a.

$$
\begin{aligned}
& x+y=6 \quad(A) \\
& x-y=-2(B)
\end{aligned}
$$

i) $A+B$, elim. y
ii) Sub. $x=2$ into
iii) Conclusion

$$
\begin{aligned}
x+y & =6 \\
x-y & =-2 \\
2 x & =4
\end{aligned}
$$

$$
e q \cdot A
$$

$$
x+y=6
$$

$$
2+y=6
$$

$$
y=4
$$

6.

$$
\begin{array}{ll}
3 x-y=11 & (A) \\
2 x+5 y=13 & \text { (B) } \tag{B}
\end{array}
$$

i) $5 A+B, \lim . y$
ii) Sub. $x=4$ into
iii) Conclusion

$$
\{(4,1)\}
$$

Consiptent system with independent equations.
COMPARING SOLUTION $\operatorname{MET} \mathcal{H} O D S$

$$
\begin{aligned}
& 15 x-5 y=55 \\
& \text { eq. } A \\
& 2 x+5 y=13 \\
& 3 x-y=11 \\
& \rightarrow-y=-1 \\
& 17 x=68 \\
& 3(1)-y=11 \\
& y=1
\end{aligned}
$$

COMPARING SOLUTION METHODS

Example 2: Solve the following systems of line ar equations by any me trod. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.
a.

$$
\begin{array}{ll}
2 x+5 y=-6 & (A) \\
7 x-2 y=11 \tag{b}
\end{array}
$$

i) $2 A+5 B$, lin. y
ii) Sub $x=\frac{43}{39}$

$$
\begin{array}{rlrl}
4 x+10 y & =-12 & \text { into eq .A } \\
35 x-10 y & =\frac{55}{x}-2 y & 7\left(\frac{43}{39}\right)-2 y & =11 \\
39 x & =43 & \frac{301}{39}-2 y=11 \frac{39}{39} \\
x & =\frac{43}{39} & & -2 y=\frac{429}{39}-\frac{301}{39}
\end{array}
$$

iii) Confusion
$\left\{\left(\frac{43}{39}, \frac{64}{39}\right)\right\}$
consistent system with
independent equations.
6.

$$
\begin{array}{ll}
4 x-y=1 & (A) \\
y=7 x-15 & (B) \tag{B}
\end{array}
$$

i) $\int u b \cdot y=7 x-15$ into eq. A

$$
\begin{array}{rl}
4 x-y=1 & y=7 x-15 \\
4 x-(7 x-15)=1 & y=7\left(\frac{4}{3}\right)-15\left(\frac{3}{3}\right) \\
4 x-7 x+15=1 & y=\frac{98}{3}-\frac{45}{3} \\
-3 x+15=1 & y=\frac{53}{3} \\
-3 x=-14
\end{array}
$$

ii) Sub. $x=\frac{14}{3}$ into eq. B
iii) Conclusion

$$
\left\{\left(\frac{4}{3}, \frac{53}{3}\right)\right\}
$$

comorotent system with independent equations.

$$
\begin{array}{ll}
4 x-2 y=2 & \text { (A) } \\
2 x-y=1 & \text { (B) }
\end{array}
$$

i) $A+(-2 b)$, elm. y

$$
\begin{aligned}
4 x-2 y & =2 \\
-4 x+2 y & =-2 \\
0 x+0 x & =0 \\
0 & =0
\end{aligned}
$$

ii) Conclusion

$$
\{(x, y) \mid 4 x-2 y=2\}
$$

consistent system with dependent equations.

$$
\text { d. } \begin{aligned}
& 3 x=4 y+1 \\
& 4 x+3 y=1
\end{aligned}
$$

e.

$$
\begin{aligned}
& 2 x+4 y=5 \\
& 3 x+6 y=6
\end{aligned}
$$

Section 4.4: PROBLEM USINGSOLVINGSYSTEMSOF EQUATIONS
When you are done with your home work you should be able to...
π Solve problems using line ar systems
π Solve simple interest problems
π Solve mixture problems
π Solve motion problems
\mathcal{W} ARM-UP:

1. Solve the system of line ar equations using the substitution or the addition method. Determine if the system is consistent or inconsistent, and if the equations are dependent or independent. Give your result in set notation.
a.
$2 x-3 y=4$
$3 x+4 y=0$
2.

$x-y=3$
$2 x=4+2 y$

A STRATEGY FOR SOLVING WORD PROBLEMS USING SYSTEMS OF EQUATIONS
When we solved problems in chapter 2 ，we let x represent a quantity that was \qquad unknown Problems in this section involve \qquad unknown \qquad quantities ．We will le t \qquad x and \qquad y represent the \qquad unknown quantities and \qquad trans late the English words into a \qquad system of \qquad linear equations．

Example 1：The sum of two numbers is five．If one number is subtracted from the other，their difference is thirteen．Find the numbers．
（1）Analysis
Let \times bet the is number
（3）Solve
（4）Conclusion
Let y be the id number
The numbers are
（2）Translate

$$
\begin{aligned}
& x+y=5 \\
& x+y=13 \\
& x-y=1
\end{aligned}
$$

$$
\begin{aligned}
& x+y=13 \\
& x-y=13
\end{aligned}
$$

Example 2：Each day，the sum of the average times spent on grooming for 15－to 19－year－old women and men is 96 minutes．The difference between grooming times for 15－to 19－year－old women and men is 22 minutes．How many minutes per day do 15－to 19－year－old women and men spend on grooming？
（1）Analysis
Let x 炮化：Hor minutes
（2）Trans cate
i）$A+B$ ，limy
（4）Conclusion per day the $15-19 y$ r old women send on grooming
Let y be the number of
（3）Solve $x+y=96$

The women spend
$x+y=96$

$$
x-y=\frac{22}{2}
$$

59 minutes and the menspend minutes per day $15-19 \mathrm{yr}$

$$
\begin{aligned}
& x+y=96(A) \\
& x-y=22(B)
\end{aligned}
$$

$$
x=59
$$ old men spend on grooming

$$
\text { ii) } S \text { Sub. } y=59
$$

into eq．A

$$
x+y=96
$$

$$
\begin{aligned}
59+y & =96 \\
y & =37
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x+y=5 \\
x-y=13
\end{array} \\
& x-y=13 \text { (A) } \quad 2 x=9 \\
& 2 x=18 \\
& 9 \text { and }-4 \text {. } \\
& \text { (B) } \\
& \text { ii) } \operatorname{sub} x=9 \\
& \text { into eq. } A \\
& \left.\begin{array}{l}
\text { into eq.A } \\
x+y=5 \\
9+y=5
\end{array}\right\} y=-4
\end{aligned}
$$

Example 3: A rectangular lot whose perimeter is 1600 feet is fenced along three sides. An expensive fencing along the lot's length costs $\$ 20$ per foot. $\mathfrak{A n}$ inexpensive fencing along the two side widths costs only $\$ 5$ per foot. The total cost of the fencing along the three sides comes to $\$ 13000$. What are the lot's dimensions?
(DAnaygis
(2) translate

か

$$
\begin{aligned}
& 2 \omega+2 l=1600 \rightarrow \omega+l=800 \\
& \begin{array}{l}
2 \omega+2 l=1600 \rightarrow \omega+l=800 \\
5 \cdot(2 \omega)+20 l=13000 \rightarrow 10 \omega+20 l=13000 \rightarrow \omega+2 l=1300 \\
\text { (14) (onclupion }
\end{array} \\
& \text { (4) Conclusion } \\
& \text { i) }-A+B, \lim \omega \\
& \omega+l=800(A) \\
& -\omega-l=-800 \\
& \text { The lot's dim- } \\
& \omega+2 l=1300(B) \quad \begin{array}{l}
\omega+2 l=1300 \quad \begin{array}{l}
\text { pensions are } \\
300 \mathrm{ft} \times 500 \mathrm{ft}
\end{array} \\
l=500
\end{array}
\end{aligned}
$$

l
| ω
$P=1600$ and (3) SONV

$$
p=2 \omega+l l
$$

ii) Sub $l=500$ indue A

Example 4: On a special day, tickets for a minor league base ballgame cost $\$ 5$ for adults and $\$ 1$ for students. The attendance that day was 1281 and $\$ 3425$ was collected. Find the number of each type of ticket sold.
(1)Anoly bis
let x bethe 10 of cult tides sold
Lit y let te 1 of forcer ticterets Sold
(2) translate

$$
\begin{aligned}
& x+y=1281 \\
& 5 x+1 y=3425 \\
& \begin{array}{l}
x=2144 \\
x=536
\end{array}
\end{aligned}
$$

(3) Save

ticket sold.
ii) sub. $x=536$ (1) Concluoish
into eq.A
$8+y=1281$
$536+y=1281$
$y=745$ $\begin{aligned} & 536 \text { adult and } \\ & 745 \text { student } \\ & \text { tickets were } \\ & \text { sold. }\end{aligned}$

Example 5: You invested $\$ 11000$ in stocks and bonds, paying 5% and 8% annual interest. If the total interest earned for the year was $\$ 730$, how much was invested in stocks and how much was invested in bonds?
(1) analysis

Let x set he a mont invested instoks and at y be the
amount investeelin bonds
(2) Translate

$$
\begin{array}{cc}
x+y=11000 & x+y=11000 \\
0.05 x+0.08 y=730 & x=11000-y \\
& \text { ii) } 54 b . x=11000-y
\end{array}
$$

(3) Solve

$$
\begin{aligned}
& \text { 2010e }=11000(A) \\
& .8 x+0.08 y=770(B)
\end{aligned}
$$

$$
05 x+.08 y=730(B)
$$

i) Gradate x in eq. A
ii) $S u b . x=1180-y$ into
eq. b

$$
0.05 x+.08 y=730
$$

$$
.05(11000-y)+.08 y=730
$$

$$
\begin{array}{r}
550-.05 y+.08 y=730 \\
=180
\end{array}
$$

$$
\frac{.03 y}{.03}=\frac{180}{.03}
$$

$$
y=6000
$$

iii) $S u b . y=6000$ into eq A

$$
\begin{gathered}
\text { Sub. } y=6000 \text { into eq } \\
x+y=11000 \rightarrow x+600=11000 \\
x=5000
\end{gathered}
$$

(4) Conclusion

$$
x=5000
$$

$\$ 5000$ man invested in Stocks and Sores wan invested in bono.
conte nt and and

Example 6: A jeweler needs to mix an alloy with a 16% gold content and an alloy with a 28% gold content to obtain 32 ounces of a new alloy with a 25% gold
content. How many ounces of each of the original alloys must be used?
(1) Indus is

Let x bethe \# of oz of alloy with 162 goth content Let y be the $\#$ of $z z$ of allow with 28% gild content
(2) Translate

$$
\begin{aligned}
& x+y=32 \\
& 0
\end{aligned}
$$

$$
.16 x+.28=.25(32)
$$

(3) Solve

$$
\left\{\begin{array}{l}
\frac{\text { Solve }}{x+y}=32 \quad(A) \\
\text { w) } 16 x+28 y=8(B) \\
\text { i) Isolate x in eq. A } \\
x+y=32 \\
x=32-y
\end{array}\right.
$$

iii) Sub. $y=24$ into eq. A
$x+y=32$

$$
x+24=32
$$

$$
x=8
$$

(4) Conclusion

We need to woe $80 z$ of the $240=0 f$
$28 y=8$ the ally When $y=24$ gold
$\mathcal{A} \mathcal{F O R M U L A} \mathcal{F O R} \operatorname{MOTION}$
$d=r t$
Distance equals __rate \qquad times _- time

Example 7: When a plane flies with the wind, it can trave 4200 miles in 6 hours. When the plane flies in the opposite direction, against the wind, it takes 7 hours
to fly the same distance. Find the rate of the plane in still air and the rate of the wind.

Let x bethe rate of the plane instill air
Let y be the rate of the wind
(2) trans cate

$$
\begin{aligned}
& (x+y) \cdot 6=4200 \rightarrow x+y=700 \\
& (x-y) \cdot 7=4200 \rightarrow x-y=600
\end{aligned}
$$

(4) Concthoish

The rate of the plane instill air is 650 mph and the rate of the wind is 50 mph .
(3) Solve

$$
\text { i) } A+B, \text { elm, } y
$$

$$
\text { ii) } S u b \cdot x=650
$$

$$
\begin{array}{ll}
x+y=700 \quad(A) & x+y=700 \\
x-y=600 \quad(B) & \left.\begin{array}{l}
x-y=600 \\
2 x
\end{array}\right) 300 \\
& x=650
\end{array}
$$

$$
\text { into eq. } A
$$

$$
x+y=700
$$

$$
\begin{array}{rlrl}
2 x & =1300 & 650+y & =700 \\
x & =650 & y & =50
\end{array}
$$

still water and the rate of the current.
(1) Andysis

Let x be the rowing rate
instill water and bet
y be the rate of the

(2) Translate

$$
\begin{aligned}
& (x+y) \cdot y=\frac{24}{3} \rightarrow x+y=8 \\
& \frac{(x-y) \cdot y}{y}=\frac{16}{4} \rightarrow x-y=4
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) Solve } \\
& x+y=8 \text { (A) (B) } \\
& x-y=4 \text { (B) } \\
& \text { i) A+B, dim. } y
\end{aligned}\left[\begin{array}{rr}
x+y=8 & \text { ii) Sub. } x=6 \text { int } \\
\text { eq. A }
\end{array}\right] \begin{array}{rr}
x-y=8 \\
2 x=6 & 6+y=8 \\
x=2
\end{array}
$$

ii) Sub. $x=6$ into
(4) Condwoion

The raving rate in still water is 6 mph and the rate of the current is 2 mph .

When you are done with your home work you should be able to...
π Understand the vocabulary used to describe polynomials
π Add polynomials
π Subtract polynomials
π Graph equations defined by polynomials of degree 2
WARM-UP:
Simplify:

$$
\begin{aligned}
& -6 x+5 y-2 x^{2}-2 y+x^{2} \\
= & -6 x+3 y-x^{2} \\
= & -x^{2}-6 x+3 y
\end{aligned}
$$

$\mathcal{D E S}$ CRIBING PO LVN $\mathcal{N} O M I \mathcal{A L S}$
${ }^{\text {a }}$ - polynomial --- is a_ Single -- term or the _Sum _--- of two or more \qquad containing _variables with whole -number exponents_- It is customary to or rite the -- -es ms _---- in the order of St of -- descending \qquad -- variable . This is the Standard --- form of a -- polynomial --- we begin this chapter by limiting discussion to polynomials containing_one_variable. Each term of

$\mathcal{T H E} \mathcal{D E G R E E} O \mathcal{F} a x^{n}$

$$
\begin{aligned}
& \text { If_afo and } n \text { is a whole number, the degree } \\
& a x^{n}
\end{aligned}
$$

\qquad . The constant zero has no defined degree.

Example 1: Identify the terms of the polynomial and the degree of each term.
a. $-4 x^{5}-13 x^{3}+5$

terms	$-4 x^{5}$	$-13 x^{3}$	5
degree	5	3	0

6. $-x^{2}+3 x-7$

terms	$-x^{2}$	$3 x$	-7
degree	2	1	0

a possum mia is simplified \qquad when it cont iss no - Grouping _s symbols

 polynomial that as - - two _--- terms is called a _-_ binomial and a

\qquad terms is scale d _ _trinomial
\qquad
 names. Thee degree ----- of a -polynomial is the
-greatest degree of \qquad the --terms of a
-polynomial
Example 2: Find the degree of the polynomial.

6. -2
degree of the polynomial is 0 .

Recall that - like
\qquad terms \qquad are terms containing exactly-- the same variable \qquad to the -Same - power s.

- Polynomials- are added $6{ }^{6}$. combining like like --- terms terms

Example 3: Add the polynomials.

$$
\begin{aligned}
\text { a. }(8 x-5)+(-13 x+9) & =8 x-5+-13 x+9 \\
& =8 x-13 x-5+9 \\
& =-5 x+4 \\
\text { 6. }\left(7 y^{3}+5 y-1\right)+\left(2 y^{2}-6 y+3\right) & =7 y^{3}+5 y-1+2 y^{2}-6 y+3 \\
& =7 y^{3}+2 y^{2}+5 y-6 y-1+3 \\
& =7 y^{3}+2 y^{2}-y+2
\end{aligned} \quad \begin{aligned}
& \text { c. }\left(\frac{2}{5} x^{4}+\frac{2}{3} x^{3}+\frac{5}{8} x^{2}+7\right)+\left(-\frac{4}{5} x^{4}+\frac{1}{3} x^{3}-\frac{1}{4} x^{2}-7\right) \\
&= \frac{2}{5} x^{4}-\frac{4}{5} x^{4}+\frac{2}{3} x^{3}+\frac{1}{3} x^{3}+\frac{5}{8} x^{2}-\frac{1}{4} x^{2}+7-7 \\
&=\frac{2-4}{5} x^{4}+\frac{2+1}{3} x^{3}+\frac{5-2}{8} x^{2}+0 \\
&=-\frac{2}{5} x^{4}+\frac{3}{3} x^{3}+\frac{3}{8} x^{2}-\frac{2}{5} x \\
& d x^{2}-5 x-6 \\
& \frac{-9 x^{2}+4 x+6}{2} \\
&-2 x^{2}-x+0 \rightarrow-2 x^{2}-x
\end{aligned}
$$

SUBTRACTING PO LYNOMIALS
we Subtract --- rear numbers by _adding --- the opposite- --- of the number 6 e e ing Subtracted _-- subtraction of polygon mats also invofes -opposites \qquad If the sum of two polynomials is \qquad zero , the polynomials are opposites \qquad of each other.
Example 4: Find the opposite of the polynomial.

a. $x+8$
$-x-8$ is the opposite of $x+8$
S UBTRACTING PO LYNNOMIALS

$$
\begin{aligned}
& \text { 6. }-12 x^{3}-x+1 \text {. } \\
& 12 x^{3}+x-1 \text { is the opp of } \\
& -12 x^{3}-x+1 \text {. }
\end{aligned}
$$

To Subtract two polynomials, add_-- the first polynomial and the -opposite of the second polynomial

Example 5: Subtract the polynomials.
a. $(x-2)-(7 x+9)=x-2-7 x-9$

$$
=x-7 x-2-9
$$

$$
=-6 x-11
$$

6. $\left(3 x^{2}-2 x\right)-\left(5 x^{2}-6 x\right)=3 x^{2}-2 x-5 x^{2}+6 x$

$$
\text { c. } \begin{aligned}
& \left(\frac{3}{8} x^{2}-\frac{1}{3} x-\frac{1}{4}\right)-\left(-\frac{1}{8} x^{2}+\frac{1}{2} x-\frac{1}{4}\right) \\
= & \frac{3}{8} x^{2}-\frac{1}{3} x-\frac{1}{4}+\frac{1}{8} x^{2}-\frac{1}{2} x+\frac{1}{4} \\
= & \frac{3}{8} x^{2}+\frac{1}{8} x^{2}-\frac{1}{3} x-\frac{1}{2} x-\frac{1}{4}+\frac{1}{4} \\
= & \frac{3+1}{8} x^{2}-\frac{2}{6} x-\frac{3}{6} x+0
\end{aligned}
$$

d.

$$
\begin{array}{r}
3 x^{5}-5 x^{3}+6 \\
-\left(7 x^{5}+4 x^{3}-2\right) \\
\hline-4 x^{5}-9 x^{3}+8
\end{array}
$$

GRAPHING EQUATIONS DEFINED BY PO LYYNOMIALS
Graphs of equations def fine 6 by - polynomials of degree \qquad 2 have a mirror like \qquad quality. We can obtain their graphs, shaped like bowls or \qquad inverted - 60 wis, using the point point plotting method for graphing an equation in two variables.
Example 6: Graph the following equations by plotting points.
a. $y=x^{2}-1$

6. $y=9-x^{2}$

x	$y=9-x^{2}$	(x, y)
-3	$y=9-(-3)^{2} y=0$	$(-3,0)$
$y=9-9$		
y	$y=9-(-1)^{2} y=8$	$(-1,8)$
$y=9-1$		
$y=9-(0)^{2} \rightarrow y=9$		
1$y=9-(1)^{2}$ $y=9-1$ $y=9-(3)^{2}$ $y=9-9$	$y=0$	$(1,8)$

Section 5.2: MULI IPLYIX $\mathcal{N G}$ PO LYe $\mathcal{N} O \mathcal{M I} \mathcal{A L S}$
When you are done with your home work you should be able to...
π Use the product rule for exponents
π Use the power rule for exponents
π Use the products-to-power rule
π Multiply monomials
π Multiply a monomial and a polynomial
π Multiply polynomials when neither is a monomial
\mathcal{W} ARM -UP:
Add or subtract the following polynomials:

$$
\text { a. } \begin{aligned}
& \left.-22 r^{7}+6 r^{3}-r^{2}\right)-\left(2 r^{7}+r^{2}-1\right) \\
= & -22 r^{7}+6 r^{3}-r^{2}-2 r^{7}-r^{2}+1 \\
= & -22 r^{7}-2 r^{7}+6 r^{3}-r^{2}-r^{2}+1 \\
= & -24 r^{7}+6 r^{3}-2 r^{2}+1
\end{aligned}
$$

$\mathcal{T H E} \operatorname{PRO} \mathcal{D U C T}$ RULE $\mathcal{F O R}$ EXPO $\mathcal{N E X N S}$

$$
\text { 6. } \begin{aligned}
& \left(8 x^{4}-x^{3}-x^{2}\right)+\left(-8 x^{4}+x^{3}\right) \\
= & 8 x^{4}-8 x^{4}-x^{3}+x^{3}-x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =0 x^{4}-0 x^{3}- \\
& =0-0-x^{2}
\end{aligned}
$$

We fave seen that exponent $\mathbf{D}_{\text {___-_ ar }}$
multiplication. Recall that $3^{4}=\ldots 3 \cdot 3 \cdot 3$

$$
=-x^{2}
$$

replaced . Vow consider $3^{4} \cdot 3^{2}$.

$$
\begin{aligned}
& =3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \\
& =3^{6}
\end{aligned}
$$

$\mathcal{T H E}$ PRODUCT RULE

$$
b^{m} \cdot b^{n}=b^{m+n}
$$

$$
=3^{4+2}
$$

When multiplying exponential expressions with the fame base, add_- the _exponentS__. use this sum_ as the _-exponent of the - common --- base.

Example 1: Simplify each expression.
a. $2^{5} \cdot 2^{3}=2^{5}$
6.

When an exponential expression is raided_ to a - power multiply the exponents_.... Pace the - product of the _exponents on the _-base_ and remove the parentheses.-.

Example 2: Simplify each expression.
a. $\left(4^{2}\right)^{3}=4^{2}$
6. $\left(x^{12}\right)^{5}=x^{12-5}$

$$
=4^{6}
$$

$$
=x^{60}
$$

$\mathcal{T H E}$ PRODUCTS - TO-POWERS RULE $\mathcal{F O R}$ EXPO VENTS

$$
(a b)^{m}=a^{m} b^{m}
$$

When a product \qquad is rained \qquad to a power raise each factor to the power

Example 3: Simplify each expression.
a. $(-2 y)^{5}=(-2)^{5} \cdot y^{5}$

$$
=-32 y^{5}
$$

$$
\text { 6. } \begin{aligned}
\left(10 x^{3}\right)^{2} & =10^{2}\left(x^{3}\right)^{2} \\
& =100 x^{3.2} \\
& =100 x^{6}
\end{aligned}
$$

MULTIPLYING MONOMIALS
To multiply --- monomials - with the same --variable -- base, multiply --- the coefficients and then multiply the _- Variable_... Use the _-produc t_re rule for exponents to multiply the --variables
Example 4: Multiply.

$$
\begin{array}{rlrl}
& \text { d. }(8 x)\left(-11 x^{4}\right) & & \text { e. }\left(7 y^{3}\right)\left(2 y^{2}\right) \\
= & {[8(-11)]\left[x \cdot x^{4}\right]} & = & (7.2)\left(y^{3} \cdot y^{2}\right) \\
= & -88 x^{1+4} & =14 y^{3+2} \\
= & -88 x^{5} & = & 14 y^{5}
\end{array}
$$

$$
f .\left(\frac{2}{5} x^{4}\right)\left(-\frac{5}{6} x^{7}\right)
$$

$$
=\left[\frac{2}{5}\left(-\frac{5}{6}\right)\right]\left[x^{4} \cdot x^{7}\right]
$$

$$
=-\frac{1}{3} x^{4+7}
$$

$$
=-\frac{1}{3} x^{\prime \prime} \quad 106
$$

so multiply \qquad a mon omial \qquad and a polynomial \qquad , use the distributive property to multiply the -polynomial \qquad by the mononial each- _term \qquad of

Example 5: Multiply.

$$
\text { a. } \begin{aligned}
& 3 x^{2}(2 x-5) \\
= & \left(3 x^{2}\right)(2 x)-\left(3 x^{2}\right)(5) \\
= & 6 x^{2+1}-15 x^{2} \\
= & 6 x^{3}-15 x^{2}
\end{aligned}
$$

6. $-x\left(x^{2}+6 x-5\right)$

$$
=(-x)\left(x^{2}\right)+(-x)(6 x)-(-x)(5)
$$

$$
=-x^{1+2}-6 x^{1+1}+5 x
$$

$$
=-x^{3}-6 x^{2}+5 x
$$

MULTIPLYING PO LYNOMIALS WHEN $\mathcal{N E I T H E R}$ IS \mathcal{A} MONOMIAL Multiply each term _-_-_ of one _polynomial_ by each -_term of the other polynomial. Then_-_ombine - like terms.

Example 6: Multiply.
a. $(x+2)(x+5)=x(x+5)+2(x+5)$

$$
\begin{aligned}
& =x(x)+x(5)+2(x)+2(5) \\
& =x^{2}+5 x+2 x+10 \\
& =x^{2}+7 x+10 \\
& =2 x(x+3)+5(x+3) \\
& =2 x^{2}+6 x+5 x+15 \\
& =2 x^{2}+11 x+15
\end{aligned}
$$

$$
\text { 6. }(2 x+5)(x+3)=2 x(x+3)+5(x+3)
$$

$$
\begin{align*}
\text { c. }
\end{aligned} \begin{aligned}
\left(x^{2}-7 x+9\right)(x+4) & =x^{2}(x+4)-7 x(x+4)+9(x+4) \\
& =x^{3}+4 x^{2}-7 x^{2}-28 x+9 x+36 \\
& =x^{3}-3 x^{2}-19 x+36
\end{align*}
$$

$$
\begin{aligned}
& \text { Example } 7 \text { : Simplify. } \\
& \begin{array}{l}
\text { a. } \frac{3 x^{2}\left(6 x^{3}+2 x-3\right)-4 x^{3}\left(x^{2}-5\right)}{5} \\
=18 x^{5}+6 x^{3}-9 x^{2}-4 x^{5}+20 x^{3} \\
=14 x^{5}+26 x^{3}-9 x^{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\text { 6. } & (y+6)^{2}-(y-2)^{2} \\
= & (y+6)(y+6)-(y-2)(y-2) \\
= & (y+6)+6(y+6)-[y(y-2)-2(y-2)] \\
= & y^{2}+6 y+6 y+36-\left[y^{2}-2 y-2 y+4\right] \\
= & y^{2}+12 y+36-\left[y^{2}-4 y+4\right] \\
= & y^{2}+12 y+36-y^{2}+4 y-4
\end{aligned}
$$

$$
\begin{aligned}
& =0 y^{2}+16 y+3 z \\
& =0+16 y+3 z \\
& =16 y+3 z
\end{aligned}
$$

a. Express the are a of the large rectangle as the product of two binomials.

$$
A=(2 x+3)(x+2)
$$

6. Find the sum of the areas of the four smaller rectangles.

$$
A=2 x^{2}+3 x+4 x+6
$$

c. Use polynomial multiplication to show that your expressions for area in parts

Section 5.3:S PECIAL PRO DUCTS
When you are done with your home work you should be able to...
π Use $\mathcal{F O}$ IL in polynomial multiplication
π Multiply the sum and difference of two terms
π Find the square of a binomial sum
π Find the square of a binomial difference $\mathcal{W} \mathcal{A R S}-\mathcal{U l}:$

Multiply the following polynomials:

$$
\text { a. } \begin{aligned}
(x-1)^{2} & =(x-1)(x-1) \\
& =x(x-1)-1(x-1) \\
& =x^{2}-x-x+1 \\
& =x^{2}-2 x+1
\end{aligned}
$$

$\mathcal{T H} \mathcal{P R} O \mathcal{D U C T}$ O $\mathcal{F} \mathcal{T} \mathcal{W} O$ BI $\mathcal{N} O \mathscr{M I} \mathcal{A L S}$: $\mathcal{F O} I \mathcal{L}$

$$
(x y)^{2} \rightarrow x^{2} y^{2}
$$

$$
\begin{aligned}
& (x+y)^{2} \neq x^{2}+y^{2} \\
= & x(x-5)(x+5)-5(x+5) \\
= & x^{2}+5 x-5 x-25 \\
= & x^{2}+0 x-25 y+y \\
= & x^{2}-25
\end{aligned}
$$

frepresents the product of the First terms in each -binomial_- o represents the product _--- of the Outside terms, I represents the product ---- of the - Inner ----- terms, and ${ }^{4}$ represents the product ----- of the \qquad

Example 1: Multiply using $\mathcal{F} O I \mathcal{L}$.
a. $(5 x+3)(3 x+8)$

$$
\begin{aligned}
& =(5 x)(3 x)+(5 x)(8)+(3)(3 x)+(3)(8) \\
& =15 x+40 x+9 x+24
\end{aligned}
$$

$$
=15 x^{2}+49 x+24
$$

$$
\begin{aligned}
& \text { 6. }(x-10)(x+9) \\
& =(x)(x)+(x)(9)+(-10)(x)+(-10)(9) \\
& =x^{2}+9 x-10 x-90 \\
& =x^{2}-x-90
\end{aligned}
$$

$\mathcal{T H E}$ PRODUCT OF $\mathcal{T H E}$ SUM $\mathcal{A N D}$ D $\operatorname{DIFFERENCE}$ OF TWO TERMS

$$
(A+B)(A-B)=A^{2}-B^{2}
$$

The -product --- of the sum and the -difference --_ of the same two terms is the square of the first minus the square of the second.

Example 2: Multiply.

$$
\text { a. } \begin{aligned}
(x+4)(x-4) & =(x)^{2}-(4)^{2} \\
& =x^{2}-16
\end{aligned}
$$

$$
\begin{aligned}
\text { 6. }(3 x-7 y)(3 x+7 y) & =(3 x)^{2}-(7 y)^{2} \\
& =9 x^{2}-49 y^{2}
\end{aligned}
$$

$\mathcal{T H E}$ SQUARE OF $\mathcal{A} \mathcal{B I N O M I A L S U M}$

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

The square \qquad of a binomial sum is if first ur m squared -- pus - 2 times ste product .-of of fec cums plus the last term squared .-.

$$
(A+B)^{2}=A^{2}+2 A B+B^{2}
$$

Example 3: Multiply.

$$
\begin{aligned}
& \text { a. }(\underline{x}+6)^{2}=(\underline{x})^{2}+2(\underline{x})(6)+(6)^{2} \quad \text { b. }\left(x^{x}+9\right)^{2}=\left(x^{2}\right)^{2}+2\left(x^{2}\right)(9)+(\underline{a})^{2} \\
& A=x \quad=x^{2}+12 x+36 \quad A=x^{2} \quad=x^{4}+18 x^{2}+81 \\
& B=9
\end{aligned}
$$

$\mathcal{T H E} S Q \mathcal{U} \mathcal{A R E} O \mathcal{F} \mathcal{A} \mathcal{B I} \mathcal{N} O \mathscr{M} I \mathcal{A L} \mathcal{D I} \mathcal{F F E R E N} C E$

$$
(A-B)^{2}=A^{2}-2 A B+B^{2}
$$

The Square --- of a binomial different is the first \qquad term squared_- minus- 2 times the -product_-- of the terms _plum------ the last term _squared ---.

$$
\begin{aligned}
& \begin{array}{l}
\text { Example t: Suatipipy. }(A-B)^{2}=A^{2}-2 A B+B^{2} \\
\text { a. }(5 x-y)^{2}=(5 x)^{2}-2(5 x)(y)+\left.(y)^{2}\right|^{6} \cdot\left(\frac{x^{3}}{3}-11\right)^{2}=\left(x^{3}\right)^{2}-2\left(x^{3}\right)(11)+(11)^{2}
\end{array} \\
& \begin{array}{l}
A=-5 x \\
B=y
\end{array} \quad=25 x^{2}-10 x y+y^{2}=x^{6}-22 x^{3}+121
\end{aligned}
$$

Section 5.4: PO $\mathcal{L} \mathcal{N} \mathcal{M} I \mathcal{A L S}$ I $\mathcal{N} S \mathcal{E V E R A L} \mathcal{V A R I A B L E S}$
When you are done with your home work you should be able to...
π Evaluate polynomials in several variables
π Understand the vocabulary of polynomials in two variables
$\pi \mathcal{A d d}$ and subtract polynomials in several variables
π Multiply polynomials in several variables
$\mathcal{W} \mathcal{A} \mathcal{R} \mathcal{M}-\mathcal{U} P:$
Evaluate the polynomial:

$$
\begin{aligned}
& x^{3} y+2 x y^{2}+5 x-2 ; x=-2 \text { and } y=3 \\
& (-2)^{3}(3)+2(-2)(3)^{2}+5(-2)-2 \\
= & (-8)(3)-4(9)-10-2 \\
= & -24-36-12
\end{aligned}
$$

1. Substitute _-- the given value for each _Variable
2. Perform the resulting _-_Computations_-- using the \qquad of _operations
$\mathcal{D E S C R I B I N G} \mathcal{P O} \mathcal{L} \mathcal{N} O \mathcal{M I} \mathcal{A L S}$ IN $\mathcal{T} \mathcal{W} O \quad V \mathcal{A R} \mathcal{A} \mathcal{B L E S}$
 the form -ax $x^{n} y^{m}-\ldots$ - The constant, $-\quad$ _- is the Coefficient
\qquad
\qquad order .

Example 1: Determine the coefficient of each term, the degree of each term, and the degree of the polynomial.

$$
8 x y^{4}-17 x^{5} y^{3}+4 x^{2} y-9 y^{3}+7
$$

term	$8 x y^{4}$	$-17 x^{5} y^{3}$	$4 x^{2} y$	$-9 y^{3}$	7
degree	5	8	3	3	0

Degree of the polynomial is 8 .
 - Polynomials --- in -Several
\qquad variables are added by combining like terms
Example 2: Add or subtract

$$
\begin{aligned}
& \left(x^{3}-y^{3}\right)-\left(-4 x^{3}-x^{2} y+x y^{2}+3 y^{3}\right) \\
= & x^{3}-y^{3}+4 x^{3}+x^{2} y-x y^{2}-3 y^{3} \\
= & x^{3}+4 x^{3}+x^{2} y-x y^{2}-y^{3}-3 y^{3} \\
= & \frac{5 x^{3}+x^{2} y-x y^{2}-4 y^{3}}{6}\left(7 x^{2} y+5 x y+13\right)+\left(-3 x^{2} y+6 x y+4\right) \\
= & 7 x^{2} y+5 x y+13-3 x^{2} y+6 x y+4 \\
= & 7 x^{2} y-3 x^{2} y+5 x y+6 x y+13+4 \\
= & 4 x^{2} y+11 x y+17
\end{aligned}
$$

The product --- of monomials forms the basis of polynomial multiplication - Multiplication can be done mentally ${ }_{6 y}$ multiplying --- coefficients -- and_ adding - exponents_--- on --_Variables
\qquad with the -- same babe .-----.
Example 3 : Multiply.

$$
\begin{aligned}
& \text { a. }\left(5 x y^{3}\right)\left(-10 x^{2} y^{4}\right) \\
& =[5(-10)]\left(x \cdot x^{2}\right)\left(y^{3} \cdot y^{4}\right) \\
& =-50 x^{1+2} y^{3+4} \quad B^{\prime}=y^{4} \\
& \text { c. }\left(\bar{x}-2 y^{4}\right)\left(\bar{x}+2 y^{4}\right) \\
& =\frac{(x)^{2}-\left(2 y^{4}\right)^{2}}{2} \\
& =x^{2}-4 y^{8} \\
& \text { 6. }-x^{7} y^{2}\left(x^{2}+7 x y-4\right) \\
& =\left(-x^{1} y^{2}\right)\left(x^{2}\right)+\left(-x^{7} y^{2}\right)(7 x y)-\left(-x^{2} y\right)(4) \\
& \text { d. }\left(x^{2}-y\right)^{2}=\left(x^{2}\right)^{2}-2\left(x^{2}\right)(y)+(y)^{2} \\
& =x^{4}-2 x^{2} y+y^{2} \\
& =-x^{7} \cdot x^{2} \cdot y^{2}-7 x^{7} \cdot x^{1} \cdot y^{2} \cdot y^{1}+4 x^{7} y^{2} \\
& =\frac{-x^{7+2} y^{2}-7 x^{7+1} y^{2+1}+4 x^{7} y^{2}}{9^{2}} \\
& A=x^{2} \\
& B=y \\
& (A-B)^{2}=A^{2}-2 A B+B^{2}
\end{aligned}
$$

Section 5.5: $\mathcal{D I V} \mathcal{V I D I} \mathcal{N G} \mathcal{P O} \mathcal{L} \mathcal{N} O \mathcal{M I} \mathcal{A} \mathcal{S}$
When you are done with your homework you should be able to...
π Use the quotient rule for exponents
π Use the zero-exponent rule for exponents
π Use the quotients-to-power rule
π Divide monomials
π Check polynomial division
π Divide a polynomial by a monomial
$\mathcal{W} \mathcal{A} \mathcal{R}-\mathcal{U} P:$

1. Find the missing exponent, designated by the question mark, in the final

$$
\begin{aligned}
& \frac{x^{8}}{x^{3}}=\frac{x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x \cdot x}{x \cdot x \cdot x} \\
& \frac{\text { step: }}{32 a^{15}} x^{?} \rightarrow ?=5 \rightarrow \frac{x^{8}}{x^{3}}
\end{aligned}=x^{8-3}
$$

2. Simplify:

$$
\left.=\frac{32 a^{3} \cdot 5}{b^{20}}\right]
$$

THE Q LO TENT RULE FOR EXPO VENTS

Example 1: Simplify each expression.
a. $\frac{2^{5}}{2^{3}}=2$
6. $\frac{x^{10}}{x^{8}}=\chi^{10-8}$
$=2^{2}$
$=4$

$\mathcal{T H E} Z E R O$ - EXPO NEAT RULE

Example 2: Simplify each expression.

$$
\begin{aligned}
6 .-7 x^{0} & =-7(1) \\
& =-7
\end{aligned}
$$

If __ a_ and_b_are realnumbers and _- \underline{b}_{-}is nonzero, then

$$
\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}
$$

When a -quotient \qquad is _raised \qquad to a power \qquad the numerator_ to the power \qquad and --divide \qquad by the _-denominator_- raised to the _power

Example 3: Simplify each expression.
a. $\left(\frac{x}{3}\right)^{5}=\frac{x^{5}}{3^{5}}$
6. $\left(\frac{4 x^{3}}{5 y}\right)^{2}=\frac{\left(4 x^{3}\right)^{2}}{(5 y)^{2}}$

$$
=\frac{x^{5}}{243}
$$

$$
\begin{aligned}
& =\frac{4^{2}\left(x^{3}\right)^{2}}{5^{2} y^{2}} \\
& =\frac{16 x^{3.2}}{25 y^{2}} \\
& =\frac{16 x^{6}}{25 y^{2}}
\end{aligned}
$$

DIVIDING MONOMIALS
To divide _-_-_ monomials _-_ divide _-_-_-_-_the - coefficients and then divide the _variables \qquad use the _quotient_r_rule for -exponents_-- to divide the _variables.

Example 4: Divide.

$$
\text { a. } \begin{aligned}
\frac{16 x^{4}}{2 x^{4}} & =\left(\frac{16}{2}\right) \cdot x^{4-4} \\
& =8 x^{0} \\
& =8(1) \\
& =8
\end{aligned}
$$

$$
\text { 6. } \frac{6 x^{2} y^{5}}{21 x y^{3}}=\left(\frac{6}{21}\right) x^{2-1} y^{5}
$$

$$
\text { c. } \frac{35 r^{8}}{14 r^{7}}=\left(\frac{35}{14}\right) r^{8-7}
$$

$$
=\frac{2}{7} x^{1} y^{2}
$$

$$
=\frac{5}{2} r^{\prime}
$$

To _ divide \qquad by a _ monomial \qquad each term \qquad of the numerator \qquad by the denominator.

$$
\begin{aligned}
\frac{3+6}{3} & =\frac{3}{3}+\frac{6}{3} \quad 3 \\
& =1+2
\end{aligned}
$$

Example 5: Find the quotient.

$$
\begin{aligned}
& \text { a. }\left(24 x^{6}-12 x^{4}+8 x^{3}\right) \div\left(4 x^{3}\right) \\
& =\frac{24 x^{6}-12 x^{4}+8 x^{3}}{4 x^{3}} \\
& =\frac{24 x^{6}}{4 x^{3}}-\frac{12 x^{4}}{4 x^{3}}+\frac{8 x^{3}}{4 x^{3}} \\
& =\frac{459 x^{10} y^{6}}{-9 x^{3} y}+\frac{459 x^{10} y^{9}+18 x^{5} y^{3}-9 x^{4} y}{5 x^{3} x^{3} y}-\frac{9 x^{4} y}{-9 x^{3} y}-9 x^{3} y \\
& =-51 x^{10-3} y^{9-1}-2 x^{5-3} y^{3-1}+1 x^{4-3} y^{1-1} \\
& =6 x^{6-3}-3 x^{4-3}+2 x \\
& =-51 x^{7} y^{8}-2 x^{2} y^{2}+x^{1} y^{0} \\
& =6 x^{3}-3 x^{11}+2 x^{0} \rightarrow 6 x^{3}-3 x+2=-51 x^{7} y^{8}-2 x^{2} y^{2}+x(11) \\
& \begin{array}{l|l}
\begin{array}{l}
\text { CREATEDBYSHANNONMARTINGRACET } \\
=6 x^{3}-3 x+2(1)-
\end{array} & =-51 x^{7} y^{8}-2 x^{2} y^{2}+x
\end{array} \\
& \begin{array}{l}
3=3 \\
=6 x^{3}-3 x+2
\end{array}
\end{aligned}
$$ When you are done with your homework you should be able to...

π Use long division to divide by a polynomial containing more than one term
π Divide polynomials using synthetic division WARM- UP:
a. Divide using long division:

side work
How many...

$$
\begin{aligned}
& =\underbrace{1234567 \div 56} \\
& =22045 \frac{47}{56}
\end{aligned}
$$

$$
56 \cdot \sin 123 \rightarrow 2
$$

$$
56 \text { 's in } 114 \rightarrow 2
$$

$$
566^{\prime \prime} \text { in } 25 \rightarrow 0
$$

$$
56^{\circ} \mathrm{s} \text { in } 256 \rightarrow 4
$$

$$
56 \text { 's in } 327 \rightarrow 5
$$

Dividend \div divisor

$$
=\text { quotient }+\frac{\text { remainder }}{\text { divisor }}
$$

$$
\begin{aligned}
& \text { 6. Simplify: } \\
& \begin{aligned}
\frac{5 x^{5}-8 x^{3}+x^{2}}{2 x^{2}} & =\frac{5 x^{5}}{2 x^{2}}-\frac{8 x^{3}}{2 x^{2}}+\frac{x^{2}}{2 x^{2}} \\
& =\frac{5}{2} x^{5-2}-4 x^{3-2}+\frac{1}{2} x^{2-2} \\
& =\frac{5}{2} x^{3}-4 x^{1}+\frac{1}{2} x^{\circ}
\end{aligned} \quad=\frac{5}{2} x^{3}-4 x+\frac{1}{2} \\
& \\
& \\
& =\frac{5}{2} x^{3}-4 x+\frac{1}{2}(1)
\end{aligned}
$$

1. \qquad Arrange the terms of _ both \qquad dividend

* If any powers are missing, write in the divisor \qquad in _-descending \qquad O times the missing power
powers of the variable.

2. Divide the first . term in the dividend $x^{2}-x+x+2 x^{2}-x+1$
 the first \qquad term in the \qquad divisor The result is the -first \qquad term of the quotient
\qquad -
3. - Multiply \qquad every term in the -_ divisor
\qquad by the first \qquad term in the -quotient \qquad Write the resulting _product \qquad be neath the dividend
\qquad with_ like terms line dup.
4. Subtract-- the product \qquad from the \qquad dividend
5. Bring \qquad down the next term in the dividend divide nd and write it ne xt to the -remainder \qquad to form a new dividend \qquad
6. Use this new expression as the \qquad dividend and repeat the process until the _-_remainder \qquad can no longer be - divided \qquad - This will occur when the --degree \qquad of the - remainder \qquad is less \qquad than the \qquad degree of the \qquad divisor .

Example 1: Divide.
a. $\frac{x^{2}+7 x+10}{x+5}=x+2$
(2) $\frac{2 x}{x}=2$

$$
\begin{aligned}
& \frac{x+2}{(x + 5) \longdiv { x ^ { 2 } + 7 x + 1 0 }} \\
& -\frac{\left(x^{2}+5 x\right) \downarrow}{2 x+10} \\
& \frac{-(2 x+10)}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } \frac{2 y^{2}-13 y+21}{y-3}=2 y-7 \\
& \frac{2 y-7}{(y-3) \sqrt{2 y^{2}-13 y+21}} \\
& -\frac{\left(2 y^{2}-6 y\right) \downarrow}{-7 y+21} \\
& \frac{-(-7 y+21)}{0}
\end{aligned}
$$

side work
(1) $\frac{2 y^{2}}{y}=2 y$
(2) $-\frac{7 y}{y}=-7$

$$
\begin{gathered}
\text { c. } \frac{\frac{x^{3}+2 x^{2}-3}{x-2}}{} \begin{array}{r}
\frac{x^{3}+2 x^{2}+0 x-3}{x-2} \\
(x-2) \\
=\frac{x^{2}+4 x+8+\frac{13}{x-2}}{x^{3}+2 x^{2}+0 x-3} \\
\frac{\left(x^{3}-2 x^{2}\right)}{4 x^{2}+0 x} \downarrow \\
\frac{-\left(4 x^{2}-8 x\right)}{8 x-3} \\
\frac{(8 x-16)}{13}
\end{array}
\end{gathered}
$$

d. $\left(8 y^{3}+y^{4}+16+32 y+24 y^{2}\right) \div(y+2)$

$$
\begin{aligned}
& \frac{-\left(y^{4}+2 y^{3}\right)}{6 y^{3}+24 y^{2}} \downarrow \\
& \frac{-\left(6 y^{3}+12 y^{2}\right)}{12 y^{2}+32 y} \\
& -\frac{\left.\left(12 y^{2}+24 y\right)\right)}{8 y+16} \\
& -(8 y+6)
\end{aligned}
$$

(1)
(2) $\frac{4 x^{2}}{x}=4 x$
(3) $\frac{8 x}{x}=8$

$$
=\frac{y^{4}+8 y^{3}+24 y^{2}+32 y+16}{y+2}
$$

side work
(1)

$$
\text { 1) } y^{4}=y^{3}
$$

$$
(y+2) \frac{y^{3}+6 y^{2}+12 y+8}{\sqrt{y^{4}+8 y^{3}+24 y^{2}+32 y+16}}
$$

(2) $\frac{6 y^{3}}{y}=6 y^{2}$
(3) $\frac{12 y^{2}}{y}=12 y$
(4) $\frac{8 y}{y}=8$

we can use - Synthetic \qquad division to divide -polynomials --- if the _- divisor is of the form __ - C \qquad . This method provides a -quotient \qquad more quick chi than --long ------- divisision.
STEPS FORSVNTHELIC DIVISION

1. Arrange the polynomial _in_-_ descending__ powers, with

 write the coefficients of the dividend
Write the leading dividend on the bottom row.
2. Multiply _-_C times the Value just written on the -bottom ---- row. Write the product column --- in the -second ------ row.
5._Add_-_ the values in this new column, writing the Sum__- in the -_bottom -- row.
3. Repeat this series of _- multiplications and addition o until all _Columns__ are filled in.
4. Use the numbers in the last row to write the quotient \qquad plus the remainder \qquad above \qquad the - divisor \qquad . The degree \qquad of the \qquad first term of the quotient will be -one \qquad less than the \square degree of the first term of the dividend \qquad The final value in this row is the remainder

Example 2: Divide using synthetic division.

$$
c=1
$$

1) $11-2$

$$
\frac{12}{12} 0
$$

$$
1 x^{\prime}+2+\frac{0}{x-1}
$$

$$
\begin{aligned}
\text { 6. } & \left(x^{2}-6 x-6 x^{3}+x^{4}\right) \div(6+x) \\
& =\frac{x^{4}-6 x^{3}+x^{2}-6 x+0}{x+6} \\
x+6 & =x-(-6) \\
c & =-6
\end{aligned}
$$

$$
\begin{aligned}
& \left.-6 \left\lvert\, \begin{array}{llll}
1 & -6 & 1 & -6
\end{array}\right.\right) \\
& \begin{array}{llll}
-6 & 72 & -438 & 2664
\end{array} \\
& \hline \begin{array}{lll}
-12 & 73 & -444
\end{array} \\
& \hline
\end{aligned}
$$

$$
c=2
$$

211 $1100000000-128$

$$
\frac{1 x^{6}+2 x^{5}+4 x^{4}+8 x^{3}+16 x^{2}+32 x+64+\frac{0}{x-2}}{x^{6}+2 x^{5}+4 x^{4}+8 x^{3}+16 x^{2}+32 x+64}
$$

d. $\left(y^{5}-2 y^{4}-y^{3}+3 y^{2}-y+1\right) \div(y-2)=y^{4}-y^{2}+y+1+\frac{3}{y-2}$

$$
\begin{array}{rcccc|c}
21 & -2 & -1 & 3 & -1 & 1 \\
2 & 0 & -2 & 2 & 2 \\
\hline 1 & 0 & -1 & 1 & 1 & 3 \\
1 y^{4}+0 y^{3}-1 y^{2}+1 y+1+\frac{3}{y-2}
\end{array}
$$

$\mathfrak{A P P L I C A T I O N}$

You just signed a contract for a new job. The salary for the first year is \$30,000 and there is to be a percent increase in your salary each year. The algebraic expression

$$
\frac{30000 x^{n}-30000}{x-1}
$$

describes your totalsalary over nyears, where x is the sum of 1 and the yearly percent increase, expressed as a decimal.
a. Wse the given expression and write a quotient of polynomials that describes your totalsalary over four years.
6. Simplify the expression in part (a) by performing the division.
c. Suppose you are to receive an increase of 8% per year. Thus, x is the sum of 1 and 0.08 , or 1.08 . Substitute 1.08 for x in the expression in part (a) as well as the simplified expression in part (6). Evaluate each expression. What is your total salary over the four-year period?

When you are done with your home work you should be able to...
π Use the negative exponent rule
π Simplify exponential expressions
π Convert from scientific notation to decimal notation
π Convert from decimal notation to scientific notation
π Compute with scientific notation
π Solve applied d problems using scientific notation

WARM-UP:

1. Divide:

$$
\begin{aligned}
& =\frac{\left(7 x^{4}-8 x\right) \div(x+3)}{x+3}+0 x^{3}+0 x^{2}-8 x+0 \\
& =7 x^{3}-21 x^{2}+63 x-197+\frac{591}{x+3}
\end{aligned}
$$

2. Simplify:
$\mathcal{N E G A T I V E} \operatorname{INTEGERS}$ AS EXPO $\mathcal{N E X T S}$
\mathcal{A} nonzero base can be raised to a__negative__-_ power. The quotílent_rule can be used to help determine what a negative integer ------ as an exponent_----- should mean.

$$
\frac{1}{2^{3}}=\frac{2^{3}}{2^{3}}=2^{0-3}=2^{-3}
$$

$\mathcal{T H E} \mathcal{N} \mathcal{E} G \mathcal{A} I \mathcal{V}_{\mathcal{E}} \mathcal{E X P O} \mathcal{N E} \mathcal{N} \mathcal{T}$ RULE
If____ is any real number other than_O__ and $n_{\text {_ is }}$ i natural number, then

$$
b^{-n}=\frac{1}{b^{n}}
$$

$\mathfrak{N E G G I I V E}$ EXPONENTS IN X NUMERATORS AND DENOMINATORS If _-_ is any real number other than_ $\mathrm{Q}_{\text {_ }}$ and \underline{n}_{-}is a natural number, then

$$
b^{-n}=\frac{1}{b^{n}} \text { and } \frac{1}{b^{-n}}=b^{n} \rightarrow \frac{1}{b^{-n}}=\frac{1}{\left(\frac{1}{b^{n}}\right)}=\frac{b^{n}}{1}=b^{n}
$$

When a negative --- number appears as an exponent
\qquad - Switch the position of the _-base \qquad - from denominator numerator \qquad or from _ nu mercator denominator , and make the numeratorto denorninodo - base \qquad base --- does not ----------change. positive

Example 1: Write each expression with positive exponents only. Then simplify, if possible.
a. $-7^{-2}=-\frac{1}{7^{2}}$
c. $3^{-1}-6^{-1}=\frac{1}{3^{1}}-\frac{1}{6^{1}}$
6. $(-7)^{-2}=\frac{1}{(-7)^{2}}$

$$
=\frac{1}{49}
$$

d. $\begin{aligned} \frac{x^{-12}}{y^{-1}} & =\frac{\frac{1}{x^{12}}}{\frac{1}{y^{1}}} \\ & =\frac{1}{x^{12}} \cdot \frac{y}{1}\end{aligned} \quad=\frac{y}{x^{12}}$

SIMPLI FYI ING EXPO NEXNTIAL EXPRESSIONS
Properties of _exponents
exponent titian expressions. An exponentiar_exppressior ------ is

- Simplified wore wen
π Each _-_ base-_---- oc urus ont \qquad
πx_{0}-parentheses ------- appear
πW_{0} - powers
$\pi \%$ ne_ngative ---- or -zero----- exponents appear

1. If necessary, be sure that each \qquad appears only Once using \qquad

$$
b^{m} \cdot b^{n}=b^{m+n}
$$ or $\frac{b^{m}}{n}=b^{m-n}$ -_-_, boos parentheses using $(a b)^{n}=a^{n} b^{n}$. If necessary, remove \qquad

\qquad $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
3. If necessary, simplify _- powers \qquad to powers \qquad us ing

$$
\left(b^{m}\right)^{n}=b^{m \cdot n}
$$

4. If necessary, rewrite
\qquad exponential expressions with Zero powers as \square $b^{0}=1$). Furthermore, write the answer with positive sing $b^{-n}=\frac{1}{b^{n}}$ or $\frac{1}{b^{-n}}=b^{n}$

Example 2: Simplify. Assume that variables represent nonzero real numbers.

A - Positive number is written in n Scientific notation when it is expressed in the form
$a \times 10$ \uparrow times
where__ is a number_ greater_-_ than or equal to _ and lessen t fan 10 - $1 \leq a<10----\quad$ and $n-$ is an integer
\qquad
\qquad
\qquad
It is cuss somary to use the - multiplication - symbol, X , rather than a dot, when writing a number in Scientific ---- notation ---. we
 number in scientific ic notation to __decimal_ _---- notation. If _ _ _ is positive _--- move tic decimal point in _-_ to the right n ne native n a n_{-}places. If _ n_{--}is -_negative ---- move the dec int ar point in - a to the - left ------- n-- paces.

Example 3: Write each number in decimal notation.
a. $7.85 \times 10^{8}=785,000,000$
c. $1.001 \times 10^{2}=\mid 00.1$
$6.9 \times 10^{-5}=0.00009$

Write the number in the form__- $\mathbf{Q}_{-1} 10$
π Determine \qquad a , the numerical \qquad factor . Move the decimal point in the --giver \qquad number to ob tain a number greater \qquad than or equal to \square and le so \qquad than \qquad 10
π Determine _ n, the \qquad exponent on $n 10^{n}$ The absolute - Value \qquad of n is the \qquad number of places the decimal point was moved \qquad The exponent n is positive if the given number is greater or equal 10 and and negative if the given number is _-between if the given number is -_ between ---_-_ 0 and _-_ than

Example 4: Write each number in scientific notation.
a. $0.00000006589=6.589 \times 10^{-8}$ c. $0.234=2.34 \times 10^{-1}$

$$
\text { 6. } 6,789,000,000,000=6.789 \times 10^{12} d .
$$

d. 1,000,234,000

$$
\begin{aligned}
& 0000,234,000 \\
& =1.000234 \times 10^{9}
\end{aligned}
$$

MULTIPLICATION $\left(a \times 10^{n}\right) \cdot\left(b \times 10^{m}\right)=(a \cdot b) \times 10^{n+m}$

DIVISION $\frac{a \times 10^{n}}{b \times 10^{m}}=\left(\frac{a}{b}\right) \times 10^{n-m}$

EXPONENTIATION

$$
\left(a \times 10^{n}\right)^{m}=a^{m} \times\left(10^{n}\right)^{m}=a^{m} \times 10^{n \cdot m}
$$

After the computation is \qquad completed \qquad , the answer may require an additional \qquad adjustment before it is expressed in _-scientific notation.

Example 5: Pe form the indicated operations, writing the answers in scientific notation.

$$
\begin{aligned}
\text { a. }\left(3 \times 10^{4}\right)\left(4 \times 10^{2}\right) & 6 .\left(2 \times 10^{-3}\right)^{5} \\
=(3.4) \times 10^{4+2} & =2^{5} \times\left(10^{-3}\right)^{5} \\
=12 \times 10^{6} & =32 \times 10^{-15} \\
=1.2 \times 10^{1} \times 10^{6} & =3.2 \times 10^{1} \times 10^{-15} \\
=1.2 \times 10^{1+6} & =3.2 \times 10^{1+(-15)} \\
=1.2 \times 10^{7} & =3.2 \times 10^{-14}
\end{aligned}
$$

$$
\text { c. } \begin{aligned}
\frac{180 \times 10^{8}}{2 \times 10^{4}} & =\left(\frac{180}{2}\right) \times 10^{8-4} \\
& =90 \times 10^{4} \\
& =9.0 \times 10^{1} \times 10^{4} \\
& =9.0 \times 10^{5}
\end{aligned}
$$

$\mathcal{A P P L I C A T I O N}$

$$
\text { a. } \begin{aligned}
\left(5 \times 10^{4}\right)^{-1} & =5^{-1} \times\left(10^{4}\right)^{-1} \\
& =\frac{1}{5} \times 10^{-4} \\
& =.2 \times 10^{-4} \\
& =2 \times 10^{-1} \times 10^{-4} \\
& =2 \times 10^{-1+(-4)} \\
& =2 \times 10^{-5}
\end{aligned}
$$

1. A human brain contains 3×10^{10} ne urons and a gorilla brain contains 7.5×10^{9} neurons. How many times as many ne urons are in the Grain of a human as in the Grain of a gorilla?

$$
\begin{aligned}
\frac{3 \times 10^{10}}{7.5 \times 10^{9}} & =\left(\frac{3}{7.5}\right) \times 10^{10-9} \\
& =.4 \times 10^{1} \\
& =4
\end{aligned}
$$

2. If the sun is approximately 9.14×10^{7} miles from the earth, how many seconds, to the nearest tenth of a second does it take sunlight to reach Earth? Use the motion formula, $d=r t$, and the fact that light travels at the rate of 1.86×10^{5} miles per second.

$$
r=1.86 \times 10^{5}, d=9.14 \times 10^{7}
$$

$$
d=r t
$$

$t=\frac{d}{r}$

$$
t=\frac{9.14 \times 10^{7}}{1.86 \times 10^{5}} \quad t=4.9 \times 10^{2}
$$

It takes sunlight approximately 4.9×10^{2} seconds to reach the Earth.

Section 6．1： $\mathcal{T H E}$ GREATEST COMMONFACTORAND FACTORING $\mathcal{B Y}$ $\mathcal{G R O U P I} \mathcal{N G}$

When you are done with your home work you should be able to．．．
π Find the greatest common factor（GCF）
π Factor out the GCF of a polynomial
π Factor by grouping

WARM－UP：
1．Multiply：

$$
\begin{aligned}
& \text { 1. Multiply: } \\
& x^{2}\left(7 x^{4}-8\right)=x^{2} \cdot 7 x^{4}-x^{2} \cdot 8 \\
&=7 x^{6}-8 x^{2}
\end{aligned}
$$

2．Divide：

$$
\begin{aligned}
\frac{16 x^{4}-8 x^{2}}{4 x^{2}} & =\frac{16 x^{4}}{4 x^{2}}-\frac{8 x^{2}}{4 x^{2}} \\
& =4 x^{2}-2
\end{aligned}
$$

factoring alopolynomial $\operatorname{covizionivg~tht~sum~of~}$ monomial $\mathcal{M E A N S} \operatorname{FINDING~} \mathcal{A N}$ equivalent EXPRESSION т⿻丷木犬 is \mathfrak{A}＿＿product
factoring out tut greats common factor (GCF)
we use the distributive property to multiply

when we --factor \qquad , we _reverse \qquad this process, expressing
the polynomial as a product \qquad
$a(b+c)=a b+a c$
factoring
$2(x+3)=2 \cdot x+2 \cdot 3$

$$
\begin{aligned}
& \operatorname{sactoriNg} \\
& a b+a c=a(b+c) \\
& 4 x+8 \\
& 4 \cdot x+4 \cdot 2=4(x+2)
\end{aligned}
$$

In any _-factoring \qquad problem, the first step is to look for the - greatest GCE ---.-.-. Common \qquad .The COCF is an expression of the highest \qquad degree that _ divides
\qquad
_Variable part of the each _ term \qquad The GCF of the -polynomial always contains the Smallest - power \qquad of a variable \qquad that appears in ALN terms of the polynomial \qquad

$$
\begin{aligned}
& \text { Example 1: Find the greatest common factor of each list of monomials: } \\
& \text { a. } 5 \text { and } \underbrace{15 x} \rightarrow 5 \text { and } \underbrace{15 x=3 \cdot 5 \cdot x} \rightarrow G C F \text { is 5 }
\end{aligned}
$$

1. Determine the _greatest common_-_ factor of ALL terms it the -polynomial
2. Express each term \qquad as the product
\qquad of the G(GE- and its other --factors
3. use the -- distributive property
\qquad to factor out the GCF

Example 2: Factor each polynomial using the GCF:
a. $9 x+9=9 \cdot x+9$.

$$
=9(x+1)
$$

6. $32 x-24=8.4 x-8.3$

$$
=8(4 x-3)
$$

c. $18 x^{3} y^{2}-12 x^{3} y-24 x^{2} y=6 x^{2} y \cdot 3 x y-6 x^{2} y \cdot 2 x-6 x^{2} y \cdot 4$

GCF: $6 x^{2} y$

$$
=6 x^{2} y(3 x y-2 x-4)
$$

d. $7(x+1)+21 x(x+1)=$

$$
\begin{aligned}
& =7(x+1) \cdot 1+7(x+1) \cdot 3 x \\
& =7(x+1)(1+3 x) \quad G C F: 7 \cdot(x+1)
\end{aligned}
$$

1. Group _-_-_ terms that have a common monomial factor. There will usually be___ groups. Sometimes the terms must be rearrange
2. Factor out the common monomial factor fromeach-group
3. Factor out the remaining common binomial_ factor (if one exists).
Example 3: Factor by grouping:

$$
\begin{aligned}
& \text { a. } \begin{array}{l}
x^{2}+3 x+5 x+15 \\
= \\
=x(x+3)+5(x+3) \\
=(x+3)(x+5)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } x y-6 x+2 y-12 \\
= & x(y-6)+2(y-6) \\
= & (y-6)(x+2)
\end{aligned}
$$

d. $10 x^{2}-12 x y+35 x y-42 y^{2}$

$$
=2 x(5 x-6 y)+7 y(5 x-6 y)
$$

$$
=(5 x-6 y)(2 x+7 y)
$$

Example 4: Factor each polynomial:

a. $12 x^{2}-25$
prime
$\mathcal{A P P L I C A T I O N}$
$\mathcal{A n}$ explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The polynomial $72 \bar{x}-16 \bar{x}^{2}$ describes the height of the debris above the ground, in feet, after x seconds.
a. Find the height of the debris after 4 seconds.

At $x=4$:

$$
72(4)-16(4)^{2}
$$

$=288-256$
$=32$ feet
6. Factor the polynomial.

$$
72 x-16 x^{2}=8 x \cdot 9-8 x \cdot 2 x
$$

$$
=8 x(9-2 x)
$$

c. Use the factored form of the polynomial in part (6) to find the height of the debris after 4 seconds. Do you get the same answer as you did in part (a)? If so, does this prove that your factorization is correct?
Af $x=4$:

$$
\begin{aligned}
& 8(4)(9-2(4)) \\
= & 32(1)
\end{aligned}
$$

Section 6.2: FACTORING TRINOMIALS WHOS $\operatorname{LEADING}$ COEFFICIENT IS 1 When you are done with your home work you should be able to...
π Factor trinomials of the form $x^{2}+b x+c$
WARM- UP:
Multiply:
a. $(x+1)(x+8)$
$=x(x+8)+1(x+8)$

$$
=x^{2}+8 x+1 x+8
$$

6. $(x-1)(x-8)$

When combining like terms, we endedup
with 2 positive terms

$$
4 \text { sum }
$$

$$
=x^{2}+9 x+8
$$

$$
\begin{aligned}
& =x(x-8)-1(x-8) \\
& =x^{2}-8 x-1 x+8 \\
& =x^{2}-9 x+8
\end{aligned}
$$

last form is positive (milt. 2 positives) when combining like terms, we ended up
with 2 negative terms sum
positive last term
(molt. 2 negatives) $=x^{2}+7 x-8$
c. $(x+1)(x-8)$ When combining like terms we had
$\left.\begin{array}{l}=x(x-8)+1(x-8) \\ =x^{2}-8 x+1 x-8 \\ =x^{2}-7 x=8\end{array}\right\}$ oppositesigns 4 difference last termisneg-
active
(milt. a positive
and a negative)
d. $(x-1)(x+8)$
$=x(x+8)-1(x+8))$
$=x^{2}+8 x-1 x-8$

$$
=x^{2}+7 x-8
$$

$\mathcal{A} \operatorname{STRATEGY}$ FOR $\mathcal{F A C I O R I N G} a x^{2}+b x+c: \mathcal{U S} \operatorname{ING}$ GROUPING

1. Multiply the leading coefficient (in this case \qquad
C
2. Find the --factors 6.2

$$
a x^{2}+b x+c
$$

Example 1: Factor each trinomial

$$
\begin{aligned}
& \text { a. } x^{2}+9 x+8 \\
= & x^{2}+8 x+1 x+8 \\
= & x(x+8)+1(x+8) \\
= & (x+8)(x+1) \\
= & x^{2}+5 x+2 x+10 \\
= & x(x+5)+2(x+5) \\
= & (x+5)(x+2) \\
= & x^{2}-8 x-5 x+40 \\
= & x(x-8)-5(x-8) \\
= & (x-8)(x-5) \\
& =x^{2}-4 x+7 x-28 \\
= & x(x-4)+7(x-4) \\
= & (x-4)(x+7) \\
& e \cdot x^{2}-4 x-5 \\
= & x^{2}-5 x+1 x-5 \\
= & x(x-5)+1(x-5) \\
= & (x-5)(x+1)
\end{aligned}
$$

$$
\begin{aligned}
& f . w^{2}+12 w-64 \\
= & \omega^{2}-4 \omega+16 \omega-64 \\
= & \omega(\omega-4)+16(\omega-4) \\
= & (\omega-4)(\omega+16)
\end{aligned}
$$

g. $y^{2}-15 y+5$
prime
f. $x^{2}-9 x y+14 y^{2}$

$$
\begin{aligned}
& =x^{2}-7 x y-2 x y+14 y^{2} \\
& =x(x-7 y)-2 y(x-7 y) \\
& =(x-7 y)(x-2 y)
\end{aligned}
$$

some polynomials can $6 e$ - factored \qquad using more than one -method \qquad . Always begin by looking for the -greateot -. © (common ------ factor factor and, if there is one, factor_- it out! a polynomial is completely_-_factored \qquad when it is written as the product of prime polynomials
Example 4: Factor completely

$$
\begin{aligned}
& \text { a. } 3 x^{2}+21 x+36 \\
= & 3\left[x^{2}+7 x+12\right] \\
= & 3\left[x^{2}+4 x+3 x+12\right] \\
= & 3[x(x+4)+3(x+4)] \\
= & 3(x+4)(x+3)]
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } y^{4}-12 y^{3}+35 y^{2} \\
= & y^{2}[y-12 y+35] \\
= & y^{2}\left[y^{2}-7 y-5 y+35\right] \\
= & y^{2}[y(y-7)-5(y-7)] \\
= & y^{2}(y-7)(y-5)
\end{aligned}
$$

$$
\text { d. }(a+b) x^{2}-13(a+b) x+36(a+b)
$$

$$
\begin{aligned}
& =(a+b)\left[x^{2}-13 x+36\right] \\
& =(a+b)\left[x^{2}-9 x-4 x+36\right] \\
& =(a+6)[x(x-9)-4(x-9)] \\
& =(a+b)(x-9)(x-4)
\end{aligned}
$$

You dive directly upward from a board that is 48 feet high. After t seconds, your height above the water is described by the polynomial $-16 t^{2}+32 t+48$.

$$
\begin{aligned}
& \text { a. Factor the polynomial completely. } \\
& -16 t^{2}+32 t+48 \\
= & -16\left[t^{2}-2 t-3\right] \\
= & -16\left[t^{2}-3 t+1 t-3\right] \\
= & -16[t-3)(t+1)]
\end{aligned}
$$

6. Evaluate both the original polynomial and its factored form for $t=3$.
$-16 t^{2}+32 t+48$
At $5=3:-16(3)^{2}+32(3)+48$

$$
\begin{aligned}
& =-144+96+48 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
&-16(t-3)(t+1) \\
& \text { At } t=3:-16(3-3)(3+1) \\
&=-16(0)(4) \\
&=0
\end{aligned}
$$

c. Do you get the same answer? Describe what this answer means?
yep! At 3 seconds, you' ll reach the water.

Section 6.3: FACIORING TRINOMIALS WHOSE LEADING COEFFICIEXNIS NOT 1

When you are done with your home work you should be able to...
π Factor trinomials by trial and error
π Factor trinomials by grouping
WARM-UP:
Factor:

$$
\begin{aligned}
& \text { a. } x^{2} y-x y^{2} \\
& =x y(x-y) \\
& \text { c. } 2 x^{3}-6 x^{2}+4 x \\
& =2 x\left[x^{2}-3 x+2\right] \\
& =2 x\left[x^{2}-2 x-1 x+2\right] \\
& =2 x[x(x-2)-1(x-2)] \\
& =2 x(x-2)(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& { }^{6} \cdot x^{2}-14 x-51 \\
= & x^{-17 x+3 x-51} \\
= & x(x-17)+3(x-17) \\
= & (x-17)(x+3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { d. } z^{2}+z-72 \\
= & z^{2}-8 z+9 z-72 \\
= & z(z-8)+9(z-8) \\
= & (z-8)(z+9)
\end{aligned}
$$

$$
-2<-3
$$

$\mathcal{A} S \mathcal{T R A T E G Y} \mathcal{F O R} \mathcal{F A C T O R I N G} a x^{2}+b x+c: \mathcal{U S I N G} \mathcal{T R I A L} \mathcal{A N D}$ ERROR
Assume, for the mome nt, that there is no _-greatest factor other than_-_.

1. Find ----- two gist -- terms \qquad
\qquad
2. Find ---- two cast --terms _--- whose - product_ is _-
3. By _-_trial -- and _- error _-_--- perform steps 1 and 2 unit tic Sum_--- of the outside -_product_----- and the Inside -product ---- is --bx -----

If -- no ---- such _- combinations_ exist, the polygon mat is - prime

Example 1: Factor using trial and error.

6. $6 x^{2}+19 x-7$
c. $3 x^{2}-13 x y+4 y^{2}$
d. $9 z^{2}+3 z+2$

A STRATEGY FOR FACTORING $a x^{2}+b x+c:$ USING G GROUPING

1. Multiply the leading coefficient and the constant, ac.
2. Find the factors \qquad of $a \cdot c$ \qquad whose sum _- is bx \qquad
3. Rewrite the middle__ term, bX_, as a Sum__ or a difference using the factors from step 2.
4. Factor
\qquad $6 y$ grouping

Example 1: Factor using grouping.

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { a. } 3 x^{2}-x-10 \\
= \\
3 x^{2}-6 x+5 x-10 \\
= \\
=(x-2)+5(x-2) \\
=(x-2)(3 x+5)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 6.8 x^{2}-10 x+3 \\
= & 8 x^{2}-6 x-4 x+3 \quad a=8 \\
= & 2 x(4 x-3)-1(4 x-3) \\
= & (4 x-3)(2 x-1)
\end{aligned}
$$

$$
\begin{aligned}
& \quad c .9 y^{2}+5 y-4 \\
& =9 y^{2}-4 y+9 y-4 \\
& =y(9 y-4)+1(9 y-4) \\
& =(9 y-4)(y+1)
\end{aligned}
$$

$$
\begin{aligned}
& d .12 x^{2}+7 x y-12 y^{2} \\
= & 12 x^{2}-9 x y+16 x y-12 y^{2} \\
= & 3 x(4 x-3 y)+4 y(4 x-3 y) \\
= & (4 x-3 y)(3 x+4 y)
\end{aligned}
$$

Example 4: Factor completely

$$
\begin{aligned}
& \text { a. } 4 x^{2}-18 x-10 \\
= & 2\left[2 x^{2}-9 x-5\right] \\
= & 2\left[2 x^{2}-10 x+1 x-5\right] \\
= & 2(2 x(x-5)+1(x-5)] \\
= & 2(x-5)(2 x+1)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { c. } 24 y^{4}+10 y^{3}-4 y^{2} \\
=2 y^{2}\left[12 y^{2}+5 y-2\right] \quad & \quad a=2=2 \\
=2 y^{2}\left[12 y^{2}-3 y+8 y-2\right] \\
=2 y^{2}[3 y(4 y-1)+2(4 y-1)] \\
= & 2 y^{2}(4 y-1)(3 y+2)
\end{array}
$$

$$
\begin{aligned}
& \text { d. } 6(y+1) x^{2}+33(y+1) x+15(y+1) \\
= & 3(y+1)\left[2 x^{2}+11 x+5\right] \\
= & 3(y+1)\left[2 x^{2}+10 x+1 x+5\right] \\
= & 3(y+1)[2 x(x+5)+1(x+5)] \\
= & 3(y+1)(x+5)(2 x+1)
\end{aligned}
$$

Section 6.4: FACTORI $\mathfrak{N G}$ S PECI AL FORMS
When you are done with your home work you should be able to...
π Factor the difference of two squares
π Factor perfect square trinomials
π Factor the sum of two cubes
π Factor the difference of two cubes
$\mathcal{W} \mathcal{A R S}-\mathcal{U l}:$
Factor:
a. $3 a^{2}-a b-14 b^{2}$

$$
\begin{aligned}
& =3 a^{2}-7 a b+6 a b-14 b^{2} \\
& =a(3 a-7 b)+2 b(3 a-7 b) \\
& =(3 a-7 b)(a+2 b)
\end{aligned}
$$

$$
\begin{aligned}
& =20 z\left(4 z^{2}+4 z-3\right) \\
& =20 z\left[4 z^{2}-2 z+6 z-3\right] \\
& =20 z[2 z(2 z-1)+3(2 z-1)] \\
& =20 z(2 z-1)(2 z+3)]
\end{aligned}
$$

$$
\begin{aligned}
& \quad \begin{array}{l}
4-10 x^{2} y^{4}+14 x y^{4}+12 y^{4} \\
=-2 y^{4}\left[5 x^{2}-7 x-6\right] \\
=-2 y^{4}\left[5 x^{2}-10 x+3 x-6\right] \quad-10 x+3 \\
=-2 y^{4}[5 x(x-2)+3(x-2)] \\
=-2 y^{4}(x-2)(5 x+3)
\end{array}
\end{aligned}
$$

6. $12 x^{2}-33 x+21$

$$
=3\left[4 x^{2}-11 x+7\right]
$$

$$
=3\left[4 x^{2}-7 x-4 x+7\right]
$$

$$
=3[x(4 x-7)-1(4 x-7)]
$$

$$
=3(4 x-7)(x-1)
$$

$\mathcal{T H E} \mathcal{D I} \mathcal{F F E R E N} C E O \mathcal{F} \mathcal{T} W O S Q U A R E S$

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

The difference of the squares of 2 terms factors as the product - of a - Sum and a difference of those terms.

$$
\begin{aligned}
& 16 \text { PERfECT SQ } \\
& 1=-1^{2} \\
& 4=-2^{2} \\
& 9=3^{2} \\
& 16=4^{2}
\end{aligned}
$$

$$
25=5^{2}
$$

$36=$ \qquad $81=9^{2}$ $169=$ $=13^{2}$
$49=$ \qquad $100=10^{2}$
$196=14^{2}$

$$
64=8^{2}
$$ $121=-\|^{2}$

$225=$ $144=-12^{2}$ $256=16^{2}$
N Wort Example 1: Factor.
$x^{2}-144$

set _A_ and_B_be realnumbers, _Variables__, or - algebraic expressions.

$$
\begin{aligned}
& \text { algeblaic--expresions. } \\
& \text { 1. } A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& \text { 2. } A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

π The -_-_iss_----- and _- Last_----- terms are Square of_monomido_- or _- constants \qquad
π rue - middle \qquad term is twice the
product --- of tee expressions \qquad being Squared in the first_and_last terms.
Example 2: Factor. $A^{2}+2 A B+B^{2}=(A+B)^{2}$ and $A^{2}-2 A B+B^{2}=(\bar{A}-B)^{2}$

$$
\begin{aligned}
& \text { yes! 6. } x^{2}+4 x+4 \\
& =x(x+2)+2(x+2) \\
& =(x+2)(x+2) \\
& =(x+2)^{2}
\end{aligned}
$$

Example 3: Factor.
a. $x^{3}+64$
c. $128-250 y^{3}$
6. $8 y^{3}-1$
d. $125 x^{3}+y^{3}$

Example 4: Factor completely
a. $25 x^{2}-\frac{4}{49}$
c. $(y+6)^{2}-(y-2)^{2}$
6. $20 x^{3}-5 x$
d. $0.064-x^{3}$

Section 6.5: A GEN(ERAL FACTORING STRATEGY
When you are done with your home work you should be able to...
π Recognize the appropriate method for factoring a polynomial
π Use a general strategy for factoring polynomials
WARS- UP:
Multiply:
a. $(x+1)\left(x^{2}-x+1\right)$
6. $(2 x-3 y)\left(4 x^{2}+6 x y+9 y^{2}\right)$

$\mathcal{A} S \mathcal{T R A T E G Y} \mathcal{F O R} \mathcal{F A C I O R I N G} \mathcal{A} \mathcal{P O L Y N} O \mathcal{M I} \mathcal{A L}$

1. If there is a_ommon_-_-_factor other than_-_, factor the CE -----
2. Determine the _number ----- of _- terms ---- in the pofyrnom ia t and try factoring as follows:
a. If there are _-_-_ terms, can the - binomial be factored by one of the following special forms?
Difference ---- of 2 squares

$$
A^{2}-B^{2}=(A+B)(A-B)
$$

perfect ----- Square ---- trinomial if so,
factor b by one of the following special forms:

$$
\begin{aligned}
& \text { factor } \text { by one of the following special f forms: } \\
& A^{2}+2 A B+B^{2} \\
& A^{2}-2 A B+B^{2}=(A-B)^{2}
\end{aligned}
$$

If the trinomial is - not ----- a - perfect
square --- try factor_----- by_trial
error ------- or grouping
c. If there are ---- $4--\quad \gtrless_{-}$or --- more -- terms, try -factoring --- by -grouping
3. check ck to see if any -- factors \qquad with more than one term in the -factored --- polynomial --- can be factored
further -. If so, factor

- Checker---- by --Multiplying

$$
\begin{aligned}
& \text { Example 1: Factor } \\
& \begin{aligned}
\text { a. } 5 x^{4}-45 x^{2} & =5 x^{2}\left[x^{2}-9\right] \\
3 & =5 x^{2}\left[(x)^{2}-(3)^{2}\right] \\
& =5 x^{2}(x+3)(x-3)
\end{aligned}
\end{aligned}
$$

$$
\text { 6. } \begin{aligned}
4 x^{2}-16 x-48 & =4\left[x^{2}-4 x-12\right] \\
& =4\left[x^{2}-6 x+2 x-12\right] \\
& =4[x(x-6)+2(x-6]] \\
& =4(x-6)(x+2)] \\
\text { c. } 4 x^{3}-64 x & =4 x\left[x^{4}-16\right] \\
& =4 x\left[\left(x^{2}\right)^{2}-(4)^{2}\right]<\text { Diff. of } \\
& =4 x\left(x^{2}+4\right)\left(x^{2}-4\right)< \\
& =4 x\left(x^{2}+4\right)\left[(x)^{2}-(2)^{2}\right] \\
& =x^{2}+6 x+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { e. } 3 x^{3}-30 x^{2}+75 x \\
& =3 x\left[x^{2}-10 x+25\right] \\
& =3 x\left[(x)^{2}-2(x)(5)+(5)^{2}\right] \\
& =3 x(x-5)^{2} \\
& \text { f. } 2 w^{5}+54 w^{2}
\end{aligned}
$$

$$
s<\backslash i p
$$

$$
\text { g. } \begin{aligned}
3 x^{4} y-48 y^{5} & =3 y\left[x^{4}-16 y^{4}\right] \quad \text { Diff ob } \\
& =3 y\left[\left(x^{2}\right)^{2}-\left(4 y^{2}\right)^{2}\right] \\
& =3 y \underbrace{\left(x^{2}+4 y^{2}\right)\left(x^{2}-4 y^{2}\right)}=3 y\left(x^{2}+4 y^{2}\right)(x+2 y)(x-2 y) \\
& =3 y\left(x^{2}+4 y^{2}\right)\left[(x)^{2}-(2 y)^{2}\right]
\end{aligned}
$$

$$
\text { f. } 12 x^{3}+36 x^{2} y+27 x y^{2}
$$

$$
=3 x\left[4 x^{2}+12 x y+9 y^{2}\right]
$$

$$
=\frac{3 x\left[(2 x)^{2}+2(2 x)(3 y)+(3 y)^{2}\right]}{2}
$$

$$
=3 x(2 x+3 y)^{2}
$$

$$
\begin{aligned}
& A^{2}+2 A B+B^{2}=(A+B)^{2} \\
& A=2 x \\
& B=3 y \\
& \text { Is } 12 x y=2(2 x)(3 y)
\end{aligned}
$$

yep!

$$
\begin{aligned}
& \text { i. } 12 x^{2}(x-1)-4 x(x-1)-5(x-1) \\
& =(x-1)\left[12 x^{2}-4 x-5\right] \\
& =(x-1)\left[12 x^{2}-10 x+6 x-5\right] \\
& \begin{array}{c}
a^{\prime 2} \\
c^{\prime 2} \\
-60
\end{array}>_{-4}^{-60}+6 \\
& =(x-1)[2 x(6 x-5)+1(6 x-5)] \\
& =\frac{(x-1)(6 x-5)(2 x+1)}{j .} \\
& =(x+7)^{2}-(4 a)^{2} \text { Diff. of squares } \\
& x^{2}+14 x+49=(x)^{2}+2(x)(7)+(7)^{2} \\
& =(x+7)^{2} \\
& =[(x+7)+4 a][(x+7)-4 a] \\
& =(x+7+4 a)(x+7-4 a)
\end{aligned}
$$

Express the area of the shaded ring shown in the figure in terms of π. Then factor this expression completely.

Section 6.6: SOLVING QUADRATIC EQUATIONS BY FACTORING
When you are done with your home work you should be able to...
π Use the zero-product principle
π Solve quadratic equations by factoring
π Solve problems using quadratic equations
\mathcal{W} ARM- UP:
a. Factor:

$$
\begin{aligned}
& =\begin{array}{l}
x^{2}-8 x+7 \\
x^{2}-7 x-1 x+7 \\
= \\
\begin{array}{l}
\text { 6. Solve: } \\
x(x-7)-1(x-7)
\end{array} \\
\quad \begin{array}{l}
+7 \\
x
\end{array}=7
\end{array}\{77\}
\end{aligned}
$$

$$
\infty=(x-7)(x-1) \quad a^{\prime \prime}
$$

$$
-7 /-8
$$

DEFINITION Of A QUADRATIC EQUATION
a quadratic equation Ge written in the Standard for $\begin{array}{r}a x^{2}+b x+c=0\end{array}$
where a, b and__ are real numbers, with $a \neq 0$ quadratic equation in \qquad X is also called a second . ---degree ---- polynomial equation in Consider the quadratic equation $x^{2}-8 x+7=0$. How is this differenfyrom the first warm-up?

化 is equal to $0 \rightarrow$ warm-up is an expression, this is an equation we can factor the left side of the -quadratic equation - $x^{2}=8 x+7$ \qquad to get $(x-7)(x-1)$. If a quadratic equation has a zero on one side and a -factored \qquad expression on the other side, it can be \qquad _-solved using the Zero \qquad product \qquad principle.
THE ZERO - PRO DUCT PRINCIPLE
If the _product _-_-_ of two or more _-algebrai c_expressions is --zero ------ then at leapt one of them is equal to _- Zero \qquad
If $A \cdot B=0$ then $A=0$ or $B=0$

$$
\begin{aligned}
& x^{2}-8 x+7=0 \\
& (x-7)(x-1)=0 \\
& x-7=0 \text { or } x-1=0 \\
& x=7 \quad x=1
\end{aligned}
$$

$$
\{1,7\}
$$

Example 1: Solve the following equations:
a. $2 x-11=0$
6. $x+1=0$

$$
\begin{aligned}
& \frac{2 x-11}{}=0 \\
& \frac{+11}{2 x}=\frac{11}{2} \\
& x=\frac{11}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x+1=0 \\
& x=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } \begin{aligned}
&(2 x-11)(x+1)=0 \\
& 2 x-11=0 \text { or } x+1 \\
& 2=0 \\
& x=\frac{11}{2} x=-1
\end{aligned} \quad\left\{-1, \frac{11}{2}\right\}
\end{aligned}
$$

STEPS FOR SOLVING A QUADRATIC EQUATION BY FACTORING

1. If necessary, fewrife_tane the equation in Standard form $a x^{2}+b x+c=0$, moving all terms_-_ to one side, the re $6 y$ obtaining zero \qquad on the other side.
2. Factor \qquad
3. Apply the \qquad Zero principle, setting each - factor \qquad equal to \qquad zero .
4. Solve \qquad the equations formed in step 3 .
5. Check
equation.
\qquad

Example 2: Solve:

$$
\begin{aligned}
& \text { a. } \begin{aligned}
& x(x+9)=0 \\
& x=0 \text { or } x+9=0 \\
& x=-9
\end{aligned}
\end{aligned}
$$

$$
\{-9,0\}
$$

$$
\text { 6. } 8(x-5)(3 x+11)=0
$$

$$
8 x 0 \text { or } x-5=0 \text { or } 3 x+11=0
$$

$$
\begin{array}{rl}
x=5 & 3 x=-11 \\
\left\{-\frac{11}{3}, 5\right\} &
\end{array}
$$

$$
\underbrace{\square}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { c. } x^{2}+x-42=0 \\
\begin{array}{l}
x^{2}-6 x+7 x-42 \\
x(x-6)+7(x-6)
\end{array}=0 \\
x(x-6) \\
(x-6)(x+7) \\
x-6=0 \text { or } x+7=0
\end{array}\right\} \text { factor bop } \begin{array}{l}
\text { apply zerb-product } \\
\text { principle }
\end{array}
\end{aligned}
$$

- o a ヘ11~0

$$
x=6 \quad x=-7
$$

$$
\text { d. } x^{2}=8 x
$$

$$
\begin{aligned}
x+7 & =0 \\
x & =-7
\end{aligned}
$$

$$
-8 x-8 x
$$

$x^{2}-8 x=0$ rewrite in standard form

$$
x(x-8)=0 \text { factor }
$$

$x=0$ or $x-8=0$ zed product principle

$$
x=8
$$

Check:

$$
\begin{aligned}
& x=-9:(-9)((-9)+9)^{?}=0 \\
&-9(0) \stackrel{?}{=} 0 \\
& 0=0 \\
&x=0:(0)(0)+9) \stackrel{?}{=} 0 \\
& 0=0
\end{aligned}
$$

$$
\{-7,6\}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { e. } 4 x^{2}=12 x-9 \\
-12 x+9 \\
\hline{ }^{2}-12 x+9
\end{array} \\
& \left.\begin{array}{l}
4 x^{2}-12 x+9=0 \\
4 x^{2}-6 x-6 x+9=0 \\
\frac{2 x(2 x-3)}{(2 x-3(2 x-3)}=0 \\
(2 x-3)
\end{array}\right\} \text { rewrite in standard form }
\end{aligned}
$$

$2 x-3=0 \rightarrow x=\frac{3}{2}$ zero product principle

$$
\text { f. }(x+3)(3 x+5)=7
$$

$$
\begin{gathered}
2 x-3=0 \\
+3+3 \\
2 x=3 \\
x=\frac{3}{2}
\end{gathered}
$$

$-7 \quad-7$

$$
\begin{aligned}
& (x+3)(3 x+5)-7=0 \\
& \left.\begin{array}{l}
x(3 x+5)+3(3 x+5)-7=0 \\
3 x^{2}+5 x+9 x+15-7=0 \\
3 x^{2}+14 x+8=0
\end{array}\right\} \\
& \text { rewrite in standard form } \\
& \left.\begin{array}{l}
3 x^{2}+2 x+12 x+8=0 \\
\frac{x(3 x+2)+4(3 x+2)}{(3 x+2)(x+4)}=0
\end{array}\right\} \\
& \rightarrow 3 x+2=0 \text { or } x+4=0 \\
& 3 x=-2 \\
& x=-4 \\
& x=-\frac{2}{3} \\
& \text { g. } x^{3}-4 x=0 \\
& x\left[x^{2}-4\right]=0 \\
& x\left[(x)^{2}-(2)^{2}\right]=0 \\
& x(x+2)(x-2)=0 \\
& x=0 \text { or } x+2=0 \text { or } x-2=0 \text { zero productprimupl } \\
& x=-2 \\
& x=2 \\
& \{-2,0,2\} \\
& \left\{-4,-\frac{2}{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { h. }(x-3)^{2}+2(x-3)-8=0 \\
& u^{2}+2 u-8=0 \\
& u^{2}-2 u+4 u-8=0 \\
& \left.\begin{array}{l}
u(u-2)+4(u-2)=0 \\
(u-2)(u+4)=0
\end{array}\right\}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } x-3=u \\
& \text { Back substitute } \\
& x-3=2 \text { or } x-3=-4 \\
& x=5 \\
& x=-1 \\
& \{-1,5\} \\
& n-z=0 \text { or } u+4=0 \text { zero product principle } \\
& u=2 \quad u=-4
\end{aligned}
$$

$\mathcal{A P P L I C A T I O \mathcal { N }}$
$\mathcal{A n}$ explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The formula $h=-16 t^{2}+72 t$ describes the height of the de bris above the ground, h, in feet, t seconds after the explosion.
a. How long will it take for the de bris to fit the ground?

$$
\left.\begin{array}{l}
h=-16 t^{2}+72 t \\
0=-16 t^{2}+72 t \\
0=-8 t(2 t-9)
\end{array}\right\} \begin{array}{rr}
-8 t=0 & \text { or } \\
t=0 & 2 t-9=9 \\
& t=\frac{9}{2}
\end{array}
$$

It will jake the debris $\frac{9}{2}$ seconds to nit the ground.
6. When will the debris be 32 feet above the ground?

The debris will be 32 feet above the ground at $\frac{1}{2}$ second and af 4 seconds. 165

When you are done with your home work you should be able to...
π Find numbers for which a rational expression is undefined
π Simplify rationale xpressions
π Solve applied a problems involving rational expressions
$\mathcal{W} \mathcal{A R} \mathcal{M}-\mathcal{U l}:$
a. Factor:

$$
\begin{aligned}
& \frac{x^{3}-8 x^{2}}{2}+2 x-16 \\
= & x^{2}(x-8)+2(x-8) \\
= & (x-8)\left(x^{2}+2\right)
\end{aligned}
$$

6. Solve:

$$
\begin{aligned}
& 2 x^{2}-x-10=0 \\
& 2 x^{2}-5 x+4 x-10=0 \\
& x(2 x-5)+2(2 x-5)=0 \\
& (2 x-5)(x+2)=0
\end{aligned} \quad \begin{array}{cc}
2 x-5=0 & \text { or } x+2=0 \\
2 x=5 & x=-2 \\
x=\frac{5}{2} & \left\{-2, \frac{5}{2}\right\}
\end{array}
$$

$$
\begin{aligned}
& a^{\prime \prime}=2 \\
& c^{\prime}
\end{aligned}
$$

EXCLUDING NUMBERS FROM RATIONAL EXPRESSIONS A _rational expression is the quotient_-_-_ of two --polynomialo__Rationat expressions indicate -_division and division $6 y$ __te ron is _undefined _must_______ any value or values of the _variable that mats _- denominator \qquad zero !

Example 1: Find all numbers for which the rationalexpression is undefined:

$$
\begin{aligned}
& \text { a. } \frac{5}{x} \frac{x \neq 0}{\text { So when } x=0, \frac{5}{x}} \\
& \text { is undefined. } \\
& \text { 6. } \frac{x+1}{x-4} \quad x-4 \neq 0, x \neq 1 \\
& \text { when } x=4, \frac{x+1}{x-4} \text { is undefined. } \\
& \text { c. } \frac{8 x-40}{x^{2}+3 x-28} \\
& \begin{array}{l}
x^{2}+3 x-28 \neq 0 \\
x^{2}-4 x+7 x-28 \neq 0
\end{array} \\
& x(x-4)+7(x-4) \neq 0 \\
& (x-4)(x+7) \neq 0 \quad x \neq 4 \quad x \neq-7 \\
& S \text { IMPI FYI No RATIo O } \mathcal{N A L} \text { EXPRESs S I O NS } \\
& S \text { IMPI FYI No RATIONaL EXTRaS SONS } \underbrace{\frac{x+3 x-28}{8 x}}) \text {) }
\end{aligned}
$$

A_ratighal expredojon_is simplified_- if its _numerator__-_ and__ denominator__ have_no__- common factors_-_ other than_-_-_ or__-_-_.

 are not \qquad

$$
\frac{P \cdot R}{Q \cdot R}=\frac{P}{Q}
$$

1. - Factor \qquad the numerator and the denominator completely.
2. Divide \qquad Goth the numerator \qquad and the
denominator_ by any common -- -- factors \qquad

Example 2: Simplify:
a. $\frac{4 x-64}{16 x}=\frac{14(x-16)}{16 x}$

$$
\begin{aligned}
& =\left.\frac{x-16}{4 x}\right|^{4} \\
& \frac{18}{33}=\frac{6(y+3)^{\prime}}{11(y+3)}
\end{aligned}
$$

\qquad

$$
\text { 6. } \begin{aligned}
\frac{6 y+18}{11 y+33} & =\frac{6(y+3)}{11(y+3)} \\
& =\frac{6}{11}
\end{aligned}
$$

$$
\text { c. } \begin{aligned}
\frac{x^{2}-12 x+36}{4 x-24} & =\frac{x^{2}-6 x-6 x+36}{4(x-6)} \\
& =\frac{x(x-6)-6(x-6)}{4(x-6)} \\
& =\frac{(x-6)(x-6)}{4(x-6)}=\frac{x-6}{4}
\end{aligned}
$$

d. $\frac{x^{3}+4 x^{2}-3 x-12}{x+4}=\frac{x^{2}(x+4)-3(x+4)}{x+4}$

e. $\frac{x+5}{x-5}$ aready simplified!
f. $\frac{x^{3}-1}{x^{2}-1}$

The -quotient _--- of two - polynomials_ that fave opposite signs and are inverses is -
you can check to see if they are opposites: $(x-3)+(3-x)^{?}=0$

$$
\begin{aligned}
x-x-3+3 & \stackrel{?}{=} 0 \\
0 & =0
\end{aligned}
$$

yes
6. $\frac{9 x-15}{5-3 x}=\frac{3(3 x-5)}{-1(3 x-5)}$

$$
=-3
$$

$$
\text { c. } \begin{aligned}
\frac{x^{2}-4}{2-x} & =\frac{(x+2)(x-2)}{-1(x-2)} \\
& =-(x+2) \text { or }-x-2
\end{aligned}
$$

A company that manufactures small canoes fias costs given by the equation

$$
C=\frac{20 x+20000}{x}
$$

in which x is the number of canoes manufactured and C is the cost to manufacture each canoe.
a. Find the cost per canoe when manufacturing 100 canoes.

6. Find the cost per canoe when manufacturing 10000 canoes.
c. Does the cost per canoe increase or decrease as more canoes are manufactured?

Section 7.2: MULTIPLYING $\mathfrak{A N D}$ DIVIDING RATIONAL EXPRESS IONS When you are done with your homework you should be able to...
π Multiply rational expressions
π Divide rational expressions
WARM-UP:
Simplify:

$$
\text { a. } \frac{a^{2}-2 a b+b^{2}}{a^{2}-b^{2}}
$$

$$
\text { 6. } \frac{x^{2}-3 x+2}{x-1}
$$

MULTIPLYING RATIONAL EXPRESSIONS

1. Factor \qquad arl_numeraters - and _ denominators
2. Divide \qquad numerators \qquad and _- denominators_ $6 y$ common_factors
3. -_Multiply ----- the remaining factors in the _numerator and _- multiply ---- the re raining factors in the denominator_.
Example 1: Multiply.
a. $\frac{x-5}{3} \cdot \frac{18}{x-8}=\frac{(x-5)(y 8)}{(3)(x-8)}$

$$
=\frac{6(x-5)}{x-8}
$$

$$
\begin{aligned}
& \text { c. } \frac{9 y+21}{y^{2}-2 y} \cdot \frac{y-2}{3 y+7} \\
= & \frac{3(3 y+7)(y-2)}{y(y-2)(3 y+7)} \\
= & \frac{3}{y}
\end{aligned}
$$

mons smoxucassasos.
 and _S $\pm O_{- \text {then }} \frac{P}{Q} \div \frac{R}{S}=\frac{P}{Q} \cdot \frac{S}{R}=\frac{P \cdot S}{Q \cdot R}$ The quotient of two rational expressions is the product --- of the first expression and the reciprocal of the second

Example 2: Divide.

$$
\begin{aligned}
& \text { a. } \frac{x}{3} \div \frac{3}{8}=\frac{x}{3} \cdot \frac{8}{3} \\
& =\frac{8 x}{9} \\
& \text { 6. } \frac{x+5}{7} \div \frac{4 x+20}{9} \\
& \text { c. } \frac{y^{2}-2 y}{15} \div \frac{y-2}{5} \\
& \begin{array}{l}
=\frac{y(y-2)}{15} \cdot \frac{5}{5-2} \quad \$=\frac{y}{3} \\
=\frac{(y)(y / 2)(8)}{(15)(y-2)}
\end{array} \\
& \text { d. } \frac{x^{2}-4 y^{2}}{x^{2}+3 x y+2 y^{2}} \cdot \frac{x^{2}-4 x y+4 y^{2}}{x+y} \\
& =\frac{x+5}{7} \cdot \frac{9}{4(x+5)} \\
& =\frac{(x+2 y)(x-2 y)}{x^{2}+2 x y+1 x y+2 y^{2}} \cdot \frac{x+y}{x^{2}-2 x y-2 x y+4 y^{2}} \\
& \begin{array}{l}
=\frac{(x+5)(9)}{(7)(4)(x+5)} \\
=\frac{9}{\frac{9}{C R E A E D E B S H A N N O N ~ M A R T I N ~}}
\end{array} \\
& =\frac{(x+2 y)(x-2 y)}{x(x+2 y)+y(x+2 y)} \cdot \frac{x+y}{x(x-2 y)-2 y(x-2 y)} \\
& =\frac{{ }^{\prime}(x+2 y)(x-2 y)(x+y)}{(x+2 y)(x+y)(x-2 y)(x-2 y) \rightarrow=\frac{1}{x-2 y}} \frac{174}{-24 / 2}
\end{aligned}
$$

Example 3: Perform the indicated operation or operations.

$$
\text { e. } \frac{5 x^{2}-x}{3 x+2} \div\left(\frac{6 x^{2}+x-2}{10 x^{2}+3 x-1} \cdot \frac{2 x^{2}-x-1}{2 x^{2}-x}\right)
$$

$$
f . \frac{5 x y-a y-5 x b+a b}{25 x^{2}-a^{2}} \div \frac{y^{3}-b^{3}}{15 x+3 a}
$$

 $\mathcal{D I} \mathcal{F F E R E N} \mathcal{E} \mathcal{D E N} O \mathcal{M I} \mathcal{N} \mathcal{A T O} \mathcal{R S}$

When you are done with your home work you should be able to...
π Find the least common denominator
$\pi \mathcal{A d d}$ and subtract rational expressions with different denominators WARM-UP: Perform the indicated operation and simplify.

1. $\frac{-3}{8}+\frac{5}{12}$
2. $\frac{x+2}{x^{2}+x}+\frac{-1}{x^{2}+x}$
$\mathcal{F I N D I} \mathcal{N} G \mathcal{T H E} L E A S \mathcal{T} \mathcal{C O} \mathcal{M M} O \mathcal{N} \mathcal{D E N} O \mathscr{M} I \mathcal{N} \mathcal{A T O R}(\mathcal{L C D})$
The \qquad denominator of several
\qquad
Of the \qquad of all \qquad in
the \qquad , with each \qquad raised to the greatest of its occurrence in any denominator.
$\mathcal{F I N} \mathcal{N} I \mathcal{N} G \mathcal{T H E} \angle E A S T$ COMMON $\operatorname{DEN} \mathcal{N} O M I N \mathcal{A T O R}$
3. _-_-_-_-_-_-_-_ each__-_-_-_-_-_-_ completely.
4. List the factors of the first \qquad .
5. Add to the list in step 2 any \qquad of the second denominator that do not appear in the list. Repeat this step for all denominators.
6. Form the \qquad of the \qquad from the list in step 3. This product is the LCD.

Example 1: Find the LCD of the rationale expressions.
a. $\frac{11}{25 x^{2}}$ and $\frac{17}{35 x}$
6. $\frac{7}{y^{2}-49}$ and $\frac{12}{y^{2}-14 y+49}$
$\mathcal{A D D I N G} \mathcal{A N D}$ SUBTRACTING RATIONAL EXPRESSIONS THAT HAVE $\mathcal{D I} \mathcal{F F E R E N T} \mathcal{D E N} O \mathcal{M} I \mathcal{N} \mathcal{A T O R S}$

1. Find the of the \qquad .
2. Rewrite each rational expression as an -----------------_ expression whose \qquad is the \qquad .
3. Add or subtract \qquad , placing the resulting expression over the LCD.
4. If possible, \qquad the resulting rational expression.

Example 2: Add or subtract as indicated. Simplify the result, if possible. a. $\frac{5}{6 x}+\frac{7}{8 x}$
6. $3+\frac{1}{x}$
c. $\frac{2}{3 x}+\frac{x}{x+3}$
d. $\frac{y}{y-5}-\frac{y-5}{y}$
e. $\frac{3 x+7}{x^{2}-5 x+6}-\frac{3}{x-3}$
f. $\frac{5}{x^{2}-36}+\frac{3}{(x+6)^{2}}$
$\mathfrak{A D D I N G} \mathcal{A N D}$ SUBTRACIING RATIONAL EXPRESSIONS WHEN $\mathcal{D E N O} M I \mathcal{N A T O R S} \operatorname{CONTAIN} O P Q O S I T E$ FACIORS

When one denominator contains the factor of the other, first either rational expression by \qquad . Then apply the
\qquad

expressions that have \qquad

Example 3: Add or subtract as indicated. Simplify the result, if possible. a. $\frac{x+7}{4 x+12}+\frac{x}{9-x^{2}}$
6. $\frac{5 x}{x^{2}-y^{2}}-\frac{2}{y-x}$
c. $\frac{7 y-2}{y^{2}-y-12}+\frac{2 y}{4-y}+\frac{y+1}{y+3}$

Section 7.5: COMPLEX RATIONALEXPRESSIONS
When you are done with your home work you should be able to...
π Simplify complex rational expressions by dividing
π Simplify complex rational expressions by multiplying by the $\mathcal{L C D}$ WARM-UP: Pe rform the indicated operation. Simplify, if possible.

1. $\frac{x+1}{x}+\frac{3 x}{x+1}$
2. $\frac{x^{2}+x}{x^{2}-4} \div \frac{12 x}{2 x-4}$

SIMPLI FYIN

1. If necessary, add or subtract to get a__________-_ rationalexpression in the \qquad .
2. If necessary, add or subtract to get a \qquad rational expression in
the \qquad .
3. Perform the \qquad indicated by the main \qquad

6ar: \qquad the denominator of the complex rational expression and \qquad .
4. If possible,

Let's simplify the problem below using this method: $\frac{\frac{1}{2}+\frac{2}{3}}{4-\frac{2}{3}}$
\mathcal{N} ow le t 's replace the constants with variables and simplify using the same method. $\frac{\frac{1}{x}+\frac{2}{x+1}}{4-\frac{2}{x+1}}$

Example 1: Simplify each complex rational expression.
a. $\frac{\frac{4}{5}-x}{\frac{4}{5}+x}$
6. $\frac{\frac{1}{x}+\frac{1}{y}}{\frac{1}{x}-\frac{1}{y}}$
c. $\frac{\frac{8}{x^{2}}-\frac{2}{x}}{\frac{10}{x}-\frac{6}{x^{2}}}$
d. $\frac{\frac{1}{x-2}}{1-\frac{1}{x-2}}$

SIMPLI FYİNG $\operatorname{AlO} \operatorname{MPLEX}$ RATIONAL EXPRESSION BY MULTIPLYING $\mathcal{B Y}$ $\mathcal{T H E} \mathcal{L C D}$

1. Find the $\mathcal{L C D}$ of ALL \qquad expressions within the \qquad
rationalexpression.
2. \qquad 6oth the \qquad and \qquad $6 y$
this LCD.
3. Use the \qquad property and multiply each \qquad in the
numerator and denominator by this \qquad -_-_-_-_-_-_-_ each
term. \mathcal{N} o _-_-_-_-_-_-_ expressions should remain.
4. If possible, \qquad and

Let's simplify the earlier problem using this method:
$\frac{\frac{1}{2}+\frac{2}{3}}{4-\frac{2}{3}}$
\mathcal{N} owlet's replace the constants with variables and simplify using the same method. $\frac{\frac{1}{x}+\frac{2}{x+1}}{4-\frac{2}{x+1}}$

Example 2: Simplify each complex rationalexpression.

$$
\text { a. } \frac{4-\frac{7}{y}}{3-\frac{2}{y}}
$$

6. $\frac{\frac{3}{x}+\frac{x}{3}}{\frac{x}{3}-\frac{3}{x}}$
c. $\frac{\frac{2}{x^{3} y}+\frac{5}{x y^{4}}}{\frac{5}{x^{3} y}-\frac{3}{x y}}$

$$
\text { d. } \frac{\frac{1}{x-2}}{1-\frac{1}{x-2}}
$$

Example 3: Simplify each complex rational expression using the method of your choice.

$$
\text { a. } \frac{\frac{3}{x+2}-\frac{3}{x-2}}{\frac{5}{x^{2}-4}}
$$

$$
\text { 6. } \frac{y^{-1}-(y+2)^{-1}}{2}
$$

Application:

The ave rage rate on a round-trip commute faving a one-way distance d is given by the complex rational expression $\frac{2 d}{\frac{d}{r_{1}}+\frac{d}{r_{2}}}$ in which r_{1} and r_{2} are the ave rage rates
on the outgoing and return trips, respectively.
a. Simplify the expression.
6. Find your ave rage rate if youdrive to the campus ave raging 40 mph and return home on the same route ave raging 30 mph .

Section 7.6:SOLVING RATIONALEQUATIONS
When you are done with your home work you should be able to...
π Solve rational equations
π Solve problems involving formulas with rationalexpressions
π Solve a formula with a rationalexpression for a variable \mathcal{W} ARM-UP:

Solve.
$3 x^{2}-2 x-8=0$

SOLVING RATIONAL EQUATIONS

1. List________-_ on the variable. (Remember-no___-_-_ in the denominator!)
2. Clear the equation of fractions by multiplying __-_-_-_ sides of the equation by the LCD of \qquad rational expressions in the equation.
3. \qquad the resulting equation.
4. Reject any proposed solution that is in the list of \qquad on the
variable. \qquad other proposed solutions in the \qquad equation.

Example 1: Solve eacf rational equation.
a. $\frac{7}{2 x}=\frac{5}{3 x}+\frac{22}{3}$

$$
\text { 6. } \frac{10}{y+2}=3-\frac{5 y}{y+2}
$$

c. $\frac{x-1}{2 x+3}=\frac{6}{x-2}$
d. $\frac{2 t}{t^{2}+2 t+1}+\frac{t-1}{t^{2}+t}=\frac{6 t+8}{t^{3}+2 t^{2}+t}$
e. $3 y^{-2}+1=4 y^{-1}$

SOLVING A FORMULA $\mathcal{F O R} \mathcal{A} \operatorname{VARI} \operatorname{ABLE}$
Formulas and _______-_ models frequently contain rational expressions. The
 equation. It is sometimes necessary to solving for.

Example 2: Solve each formula for the specified variable.
a. $\frac{V_{1}}{V_{2}}=\frac{P_{2}}{P_{1}}$ for V_{2}
6. $z=\frac{x-\bar{x}}{s}$ for x
c. $f=\frac{f_{1} f_{2}}{f_{1}+f_{2}}$ for f_{2}
 $\mathcal{P R O} \operatorname{PO} \mathcal{R T}$ I O $\mathcal{N} S$

When you are done with your homeworkyou should be able to...
π Solve problems involving motion
π Solve problems involving work
π Solve problems involving proportions
π Solve problems involving similar triangles
$\mathcal{W} \mathcal{A R} \mathcal{M}-\mathcal{U l}:$
\mathcal{A} motorboat traveled 36 miles downstream, with the current, in 1.5 hours. The return trip upstream, against the current, covered the same distance, but took 2 hours. Find the boat's rate in still water and the rate of the current.

Recallthat \qquad . Rational expressions appear in \qquad
problems when the conditions of the problem involve the \qquad traveled.

When we isolate time in the formula above, we get

Example 1: As part of an exercise regimen, you walk 2 miles on an indoor track. Then you jog at twice your walking speed for another 2 miles. If the total time spent walking and jogging is 1 hour, find the walking and jogging rates.

Example 2: The water's current is 2 mph . A canoe can travel 6 miles downstream, with the current, in the same amount of time that it travels 2 miles upstream, against the current. What is the canoe's average rate in still water?

PRO $\mathcal{B L E M S}$ INNO LVING $\mathcal{N} \mathcal{N} O R$
In__-_-_-_-_ problems, the number__-_ represents one__-_-_-_ job -------------_. Equations in work problems are based on the following condition:

Example 3: Shannon canclean the fouse in 4 fours. When she worked with Rory, it
took 3 hours. Howlong would it take Rory to clean the house if he worked alone?

Example 4: A furricane strikes and a rural area is without food or water. Three crews arrive. One can dispense needed supplies in 10 hours, a second in 15 fours, and a third in 20 hours. Howlong will it take all three crews working together to dispense food and water?
\mathcal{A} ratio is the quotient of two numbers or two quantities. The ratio of two numbers a and 6 can be written as

$$
\begin{aligned}
& a \text { to } b \text { or } \\
& a: b \text { or } \\
& \frac{a}{b}
\end{aligned}
$$

\mathcal{A} proportion is an equation of the form $\frac{a}{b}=\frac{c}{d}$, where $b \neq 0$ and $d \neq 0$. We call a, 6, c, and d the terms of the proportion. The cross-products ad and bc are equal. Example 5: According to the authors of $\mathfrak{N} u m b e r \mathcal{F r e a k i n g}$, in a global village of 200 people, 9 get drunk every day. How many of the world's 6.9 billion people (2010 population) get drunkevery day?

Example 6: A person's hair length is proportional to the number of years it fras beengrowing. After 2 years, a person's hair grows 8 inches. The longest moustacke on record was grown by Kalyan Sain of India. Saingrew fis moustache for 17 years. Howlong was each side of the moustache?

Two figures are similar if the ir corresponding angle measures are equal and the ir corresponding sides are proportional.

Example 7: A fifth-grade student is conducting an experiment to find the fieight of a tree in the schoolyard. The student measures the length of the tree's shadow and thenimmediatelymeasures the length of the shadow that a yardstick forms. The tree's shadowmeasures 30 feet and the yardstick's shadowmeasures 6 feet. Find the height of the tree.

