Section 1.8: EXPONENTS AND ORDER OF OPERATIONS

When you are done with your homework you should be able to...

- π Evaluate exponential expressions
- π Simplify algebraic expressions with exponents
- $\pi~$ Use the order of operations agreement
- π Evaluate mathematical models

WARM-UP:

1. Determine whether the given number is a solution of the equation.

$$\frac{5m-1}{6} = \frac{3m-2}{4}; -4$$

- 2. Write a numerical expression for each phrase. Then simplify the numerical expression.
 - a. 14 added to the product of 4 and -10

b. The quotient of -18 and the sum of -15 and 12 $\,$

DEFINITION OF A NATURAL NUMBER EXPONENT

If <i>b</i> is a real number and <i>n</i> is a natural number,
is read "the of or " to the
power. The expression is called an
Example 1: Evaluate.

1.
$$(-5)^3$$
 2. $(-12)^2$

ORDER OF OPERATIONS

1. Perform all	_ within	symbols
2. Evaluate all	_ expression	ons.
3. Do all	and _	in the order
in which they occur, working fr	om	to
4. Finally, do all	and	using one of the
following procedures:		
π Work from	to	and do additions and
subtractions in the		in which they occur.
or		
π Rewrite subtractions as _		of
Combine	_ and	numbers
separately, and then		_ these results.

Example 2: Simplify.

1.
$$40 \div 4 \cdot 2$$
 3. $(3 \cdot 5)^2 - 3 \cdot 5^2$

2.
$$\frac{-5(7-2)-3(4-7)}{-13-(-5)}$$
4.
$$\left[-\frac{4}{7}-\left(-\frac{2}{5}\right)\right]\left[-\frac{3}{8}+\left(-\frac{1}{9}\right)\right]$$

Example 3: Simplify each algebraic expression.

1.
$$-6x^2 + 18x^2$$

2.
$$4(7x^3-5)-[2(8x^3-1)+1]$$

3.
$$6-5[8-(2y-4)]$$

APPLICATIONS

In Palo Alto, CA, a government agency ordered computer-related companies to contribute to a pool of money to clean up underground water supplies. (The companies had stored toxic chemicals in leaking underground containers). The mathematical model $C = \frac{200x}{100-x}$ describes the cost, *C*, in tens of thousands of dollars, for removing *x* percent of the contaminants.

1. Find the cost, in tens of thousands of dollars, for removing 50% of the contaminants.

2. Find the cost, in tens of thousands of dollars, for removing 60% of the contaminants.

3. Describe what is happening to the cost of the cleanup as the percentage of contaminant removed increases.

Section 2.1: THE ADDI TI ON PROPERTY OF EQUALI TY

When you are done with your homework you should be able to...

- π Identify linear equations in one variable
- π Use the addition property of equality to solve equations
- π Solve applied problems using formulas

WARM-UP:

Simplify:

1.
$$\frac{1}{2} - \frac{2}{3} \div \frac{5}{9} + \frac{3}{10}$$
 2. $-40 \div 5 \cdot 2$

LINEAR EQUATIONS IN ONE VARIABLE

In Chapter 1, we learned that an	<pre> is a statement that two</pre>
expressions are	
whether a given number is an equation's	by substituting that
number for each occurrence of the	When the
resulted in a true statement,	that was
a When the substituted numb	per resulted in a
statement, that number was	a

VOCABULARY

Solving an equation: The of finding the (or				
) that make the equation a statement. These				
numbers are called the or of the equation,				
and we say that they the equation.				
and we say that they the equation.				

DEFINITION OF A LINEAR EQUATION IN ONE VARIABLE

A	in	is	
an equation that can be written in the form			
where,, a	nd are real numbers, and		

Example 1: Give three examples of a linear equation in one variable.

1.			
2.			
3.			

Example 2: Give two examples of a nonlinear equation in one variable.

1.

2.

VOCABULARY

Example 3: Solve the following equations. Check your solutions.

1.
$$y-5 = -18$$
 4. $-\frac{1}{8} + x = -\frac{1}{4}$

2.
$$18 + z = 14$$
 5. $-3x - 5 + 4x = 9$

3.
$$x+10.6 = -9$$

6. $7x+3 = 6(x-1)+9$

ADDING AND SUBTRACTING VARIABLE TERMS ON BOTH SIDES OF AN EQUATION

Our goal is to ______ all the _____ terms on one side of

the equation. We can use the ______ of

_____ to do this.

APPLICATIONS

1. The cost, *C*, of an item (the price paid by a retailer) plus the markup, *M*, on that item (the retailer's profit) equals the selling price, *S*, of the item. The formula is C + M = S.

The selling price of a television is \$650. If the cost to the retailer for the television is \$520, find the markup.

2. What is the difference between solving an equation such as 5y+3-4y-8=6+9 and simplifying an algebraic expression such as 5y+3-4y-8?

Section 2.2: THE MULTIPLICATION PROPERTY OF EQUALITY

When you are done with your homework you should be able to...

- $\pi~$ Use the multiplication property of equality to solve equations
- π Solve equations in the form of -x = c
- π Use the addition and multiplication properties to solve equations
- π Solve applied problems using formulas

WARM-UP:

Solve:

1. 5z - 12 = z + 82. x = -7(2-x) + 18

THE MULTIPLICATION PROPERTY OF EQUALITY

Example 1: Solve the following equations. Check your solutions.

1.
$$-5z = -20$$
 4. $-\frac{1}{8}x = 6$

2. -51 = -y 5. 6z - 3 = z + 2

3.
$$8x - 3x = -45$$

6. $5y + 6 = 3y - 6$

APPLICATIONS

The formula $M = \frac{n}{5}$ models your distance, *M*, from a lightning strike in a thunderstorm if it takes *n* seconds to hear thunder after seeing the lightning.

If you are three miles away from the lightning flash, how long will it take the sound of thunder to reach you?

Section 2.3: SOLVING LINEAR EQUATIONS

When you are done with your homework you should be able to...

- π Solve linear equations
- π Solve linear equations containing fractions
- π Identify equations with no solution or infinitely many solutions
- π Solve applied problems using formulas

WARM-UP:

Solve:

1.
$$-12z = 144$$
 2. $-x = -7x + 24$

A STEP-BY-STEP PROCEDURE FOR SOLVING LINEAR EQUATIONS

Example 1: Solve the following equations. Check your solutions.

1. -z - 34 + 10z = 2 + 10z - 544. 3(x+2) = x + 30

2.
$$20 = 44 - 8(2 - x)$$

5. $2(x - 15) + 3x = (6 + 4x) - (9x - 2)$

3.
$$5x-4(x+9) = 2x+3$$

6. $100 = -(x-1)+4(x-6)$

LINEAR EQUATIONS WITH FRACTIONS

Equations are	to solve when they do not contain	
To remo	ove fractions, we can	
sides of the equation by t	าe	
of any fractions in the equ	ation. Rememberthe _	is the
nui	mber that all	will
into. This is often called ".	an e	equation of".

Example 2: Solve the following equations. Clear the fractions first. Check your solutions.

1.
$$\frac{x}{2} + 13 = -22$$
 3. $\frac{3y}{4} - \frac{2}{3} = \frac{7}{12}$

2.
$$\frac{z}{5} - \frac{1}{2} = \frac{z}{6}$$
 4. $\frac{x-2}{3} - 4 = \frac{x+1}{4}$

If you attempt to	an equation w	ith	or
one that is	_ for	_ real number, you will	
the			
π An	_ equation with		_ results in
a statement, such as			
π An	_ that is	for	real
number results in a	statem	ent, such as	·

RECOGNIZING INCONSISTENT EQUATIONS AND IDENTITIES

Example 3: Solve the following equations. Use words or set notation to identify equations that have no solution, or equations that are true for all real numbers. Check your solutions.

1.
$$2(x-5) = 2x+10$$

3. $\frac{x}{2} + \frac{2x}{3} + 3 = x+3$

2.
$$5x-5=3x-7+2(x+1)$$

4. $\frac{x}{4}+3=\frac{x}{4}$

APPLICATIONS

The formula $p = 15 + \frac{5d}{11}$ describes the pressure of sea water, *p*, in pounds per square foot, at a depth of *d* feet below the surface.

 The record depth for breath-held diving, by Francisco Ferreras (Cuba) off Grand Bahama I sland, on November 14, 1993, involved pressure of 201 pounds per square foot. To what depth did Francisco descend on this venture? (He was underwater for 2 minutes and 9 seconds!)

2. At what depth is the pressure 20 pounds per square foot?

Section 2.4: FORMULAS AND PERCENTS

When you are done with your homework you should be able to...

- π Solve a formula for a variable
- π Express a percent as a decimal
- π Express a decimal as a percent
- $\pi~$ Use the percent formula
- π Solve applied problems involving percent change

WARM-UP:

Solve:

1. 4 = 0.25B 2. $1.3 = P \cdot 26$

SOLVING A FORMULA FOR ONE OF ITS VARIABLES

Solving a formula for a variable	means	the
so that the	is	on one side of the
equation. To solve a formula for	one of its variables, treat	that
as if it were the only	in the	·
PERIMETER		
The of a		figure is the
of the	of its I	Perimeter is measured
in units, such as _		
or		

PERIMETER OF A RECTANGLE

The perimeter,, of a rectangle with ler	igth and width is given
by the formula	

SQUARE UNITS

Α	unit is a	, each of whose sides is	unit
in length. The	of a	figure is th	ie
number of		it takes to fill the interior of	[:] the
figure.			

AREA OF A RECTANGLE

The area,, of a rectangle with length _	and width is given by	
the formula		

Example 1: Solve the following formulas for the specified variable.

1. d = rt; t 2. P = C + MC; C

Example 2: Consider a rectangle which has an area of 15 square feet and a width of 3 feet.

1. Find the length.2. Find

2.	Find	the	perimeter.
----	------	-----	------------

BASICS OF PERCENTS

are the result of	numbers as
of The word	means
PERCENT NOTATION	
means	

STEPS FOR EXPRESSING A PERCENT AS A DECIMAL NUMBER

1. Move the	point	places to the
2. Remove the	sign.	

Example 3: Express each percent as a decimal.

1. 9.5% 2. 235%

STEPS FOR EXPRESSING A DECIMAL NUMBER AS A PERCENT

1. Move the	point	places to the
2. Attach a	sign.	

Example 4: Express each decimal as a percent.

1. 1.75 2. 0.01

A FORMULA INVOLVING PERCENT

are	useful in comparing two	То
the nu	mber to the number	using a percent
, the following formu	la is used:	
Example 5: Solve.		
1. What is 12% of 50?	2. 6 is 30% of what?	3. 200 is what percent of 20?

APPLICATIONS

- 1. The average, or mean, A, of four exam grades, x, y, z, and w, is given by the formula $A = \frac{x + y + z + w}{4}$.
 - a. Solve the formula for w.

b. Use the formula in part (a) to solve this problem: On your first three exams, your grades are 76%, 78%, and 79%: x = 76, y = 78, and z = 79. What must you get on the fourth exam to have an average of 80%?

2. A charity has raised \$225,000, with a goal of raising \$500,000. What percent of the goal has been raised?

- 3. Suppose that the local sales tax rate is 7% and you buy a graphing calculator for \$96.
 - a. How much tax is due?

b. What is the calculator's total cost?

Section 2.5: AN INTRODUCTION TO PROBLEM SOLVING

When you are done with your homework you should be able to...

- π Translate English phrases into algebraic expressions
- π $\,$ Solve algebraic word problems using linear equations $\,$

WARM-UP:

Solve:

A fax machine regularly sells for \$380. The sale price is \$266. Find the percent decrease in the machine's price.

STEPS FOR SOLVING WORD PROBLEMS

1. Analysis: READ the problem. Th	en, the	problem again!!!
Draw a	_ and/or make a	I dentify
and name all known and unknown		
2. Translate to Mathese: Write an	equation that translates, or	/
the conditions of the problem.		
3. Solve: th	ne equation. Then	your
solution.		
4. Conclusion: Write your result, ir	۱	

Example 1: Solve the following word problems.

1. The sum of a number and 28 is 245. Find the number.

2. Three times the sum of five and a number is 48. Find the number.

3. Eight subtracted from six times a number is 298. Find the number.

4. If the quotient of three times a number and four is decreased by three, the result is nine. Find the number.

5. A car rental agency charges \$180 per week plus \$0.25 per mile to rent a car. How many miles can you travel in one week for \$395? 6. A basketball court is a rectangle with a perimeter of 86 meters. The length is 13 meters more than the width. Find the width and length of the basketball court.

7. This year's salary, \$42,074, is a 9% increase over last year's salary. What was last year's salary?

8. A repair bill on a sailboat came to \$1603, including \$532 for parts and the remainder for labor. If the cost of labor is \$35 per hour, how many hours of labor did it take to repair the sailboat?

Section 2.6: PROBLEM SOLVING IN GEOMETRY

When you are done with your homework you should be able to...

- π Solve problems using formulas for perimeter and area
- π Solve problems using formulas for a circle's area and circumference
- $\pi~$ Solve problems using formulas for volume
- π Solve problems involving the angles of a triangle
- π Solve problems involving complementary and supplementary angles

WARM-UP:

Solve:

After a 30% reduction, you purchase a DVD player for \$98. What was the selling price before the reduction?

COMMON FORMULAS FOR PERIMETER AND AREA

Example 1: Solve.

1. A triangle has a base of 6 feet and an area of 30 square feet. Find the triangle's height.

2. A rectangle has a width of 46 cm and a perimeter of 208 cm. What is the rectangle's length?

3. Find the area of the trapezoid.

Example 2: Solve.

1. Find the area and circumference of a circle which has a diameter of 40 feet.

2. Which one of the following is a better buy: a large pizza with a 16-inch diameter for \$12 or two small pizzas, each with a 10-inch diameter, for \$12?

GEOMETRIC FORMULAS FOR VOLUME

_____ units.

Example 3: Solve.

1. Solve the formula for the volume of a cone for h.

2. A cylinder with radius 2 inches and height 3 inches has its radius quadrupled. How many times greater is the volume of the larger cylinder than the smaller cylinder?

3. Find the volume of a shoebox with dimensions 6 in x 12 in x 5 in.

THE ANGLES OF TRIANGLES

An _____, symbolized by _____, is made up of two _____

that have a common ______. The common endpoint is called the

_____. The two rays that form the angle are called its ______.

One way to	angles is in _		, symbolized by a
small, raised	There are	e in	a circle
is 0	of a complete rotation.		
THE ANGLES OF A TRIANGLE			
The	of the	of the three angle	s of
triangle is			

COMPLEMENTARY AND SUPPLEMENTARY ANGLES

Two angles with measures having a of are called
angles. Two angles with measures having a of
are called

Example 4: Solve.

 One angle of a triangle is three times as large as another. The measure of the third angle is 40° more than that of the smallest angle. Find the measure of each angle.

2. Find the measure of the complement of each angle.
a. 56°
b. 89.5°

- 3. Find the measure of the supplement of each angle.
 - a. 177° b. 0.2°

 Find the measure of the angle described. The measure of the angle's supplement is 52° more than twice that of its complement. Example 5: Find the area of the shaded region.

Section 2.7: SOLVING LINEAR INEQUALITIES

When you are done with your homework you should be able to...

- π Graph the solutions of an inequality on a number line
- π Use interval notation
- π Understand properties used to solve linear inequalities
- π Solve linear inequalities
- π Identify inequalities with no solution of infinitely many solutions
- π Solve problems using linear inequalities

WARM-UP:

Solve:

Find the volume of a sphere with diameter 11 meters.

VOCABULARY

Linear inequality in one variable: An inequality in the form,				
,	,	, or		
is a linear inequality in one variable means means				
means	or	, means		
, and _	means	or		
Solving an inequality:	The	of findin	g the	of
--------------------------	-------------------	------------------	------------------	-----------------------
that	will make the ine	equality a	staten	nent. These
numbers are called the	solutions of the		, and we sa	y they <u>satisfy</u>
the	The	of	solutions	is called the
solution set of the ineq	quality.			
GRAPHS OF INEQUA	LITIES			
There are		solu	utions to the i	nequality
x > 5. In other words,	the solution set	for this inequa	lity is all	
numbers which are				. Can we list all
these numbers? What	does the graph o	f the solution s	set look like? I	Hmmmm
Graphs of	to			are
shown on a		_ by shading		
representing numbers	that are			
//	, indicate		_ that are	
and	,, indic	ate	that a	re
Example 1: Graph the s	olutions of each	inequality.		
a. $x \le 6$				
				9 10
-10 -9 -0 -7 -0 -5	-4 -3 -2 -1 (1 2 3 4	5078	5 10

SOLUTION SETS OF INEQUALITIES

INEQUALITY	I NTERVAL NOTATI ON	SET-BUILDER NOTATION	GRAPH
x > a			
$x \ge a$			
<i>x</i> < <i>b</i>			
$x \leq b$			
a < x < b			
$a \le x \le b$			
$a < x \le b$			
$a \le x < b$			

PARENTHESIS ARE ALWAYS USED WITH _____ OR _____!!!

PROPERTIES OF INEQUALITIES

PROPERTY	THE PROPERTY I N WORDS	EXAMPLE
THE ADDI TI ON PROPERTY OF I NEQUALI TY		
If, then		
If, then		
- <u></u> .		
THE POSITIVE MULTIPLICATION PROPERTY OF INEQUALITY		
If and is		
positive, then		
If and is		
positive, then		
THE NEGATIVE PROPERTY OF INEQUALITY		
If and is		
negative, then		
If and is		
negative, then		

STEPS FOR SOLVING A LINEAR INEQUALITY

1. Simplify the		on each side.	
2. Use the	property of	to	collect all
the	terms on one side	e and all the	
terms on the other s	side.		
3. Use the	property of	of	_ to
	the	and	
t	he (of the	when
	or	both sides	by a
	_ number.		
4. Express the	set in	or	
nota	ation, and	the solution set o	n a
li	ne.		

Example 2: Solve each inequality and graph the solution.

a. $x - 3 \le 2$

b. 5x + 8 > 2x - 7

c. $4(x+1) \ge 3x+6$

RECOGNIZING INEQUALITIES WITH NO SOLUTION OR INFINITELY MANY SOLUTIONS

If you attempt to solve an inequality with _	or one that is
for	number, you will
the	
π An inequality with	results in a
statement, such as The set	olution set is or, the
set, and the	is an number
line.	

π An inequality that is	for	number
results in a	_ statement, such as	The solution set is
or	, and	d the graph is a
	line	9.

Example 3: Solve each inequality and graph the solution.

a. 2(x+1)-1 < 2x+1

APPLICATION

On three examinations, you have grades of 88, 78, and 86. There is still a final examination, which counts as one grade.

1. In order to get an A, your average must be at least 90. If you get 100 on the final, compute your average and determine if an A in the course is possible.

2. To earn a B in the course, you must have a final average of at least 80. What must you get on the final to earn a B in the course?

Section 3.1: GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

When you are done with your homework you should be able to...

- π Plot ordered pairs in the rectangular coordinate system
- $\pi~$ Find coordinates of points in the rectangular coordinate system
- π $\,$ Determine whether an ordered pair is a solution of an equation
- $\pi~$ Find solutions of an equation in two variables
- π Use point plotting to graph linear equations
- π Use graphs of linear equations to solve problems

WARM-UP:

1. Find the volume of a box with dimensions ½ ft by 3 ft by 8 ft.

2. Solve the following inequalities and graph the solution sets. a. $x \le 6(3x-5)$

POINTS AND ORDERED PAIRS

Example 1: Plot the following ordered pairs.

(2,5), (-3,7), (-2,-4)

a. (0,1) b. (-1,3) c. (2,-15)

Example 3: Find three solutions of 2y = -x - 1.

GRAPHING LINEAR EQUATIONS IN THE FORM y = mx + b

The ______ of the ______ is the _____ of all _____

whose ______ satisfy the equation.

STEPS FOR USING THE POINT-PLOTTING METHOD FOR GRAPHING AN EQUATION IN TWO VARIABLES

Find several ______ that are ______ of the equation.
Plot these ordered pairs as ______ in the ______ coordinate system.
______ the points with a ______ curve or _____, depending on the type of equation.

Example 3: Graph the following equations by plotting points.

a. y = 2x

x	y = 2x	(x, y)	
			*
			

b.
$$y = -3x + 9$$

$$c. \quad y = \frac{2}{5}x + 3$$

x	$y = \frac{2}{5}x + 3$	(x, y)	1
			ŧ
			-
			1
			=

COMPARING GRAPHS OF LINEAR EQUATIONS

APPLICATION

In 1960, per capita fish consumption was 10 pounds. This increased by approximately 0.15 pound per year from 1960 through 2005. These conditions can be described by the mathematical model F = 0.15n+10, where F is per capita fish consumption *n* years after 1960.

a. Let n = 0, 10, 20, 30, and 40. Make a table of values showing five solutions of the equation.

п	F = 0.15n + 10	(n,F)

b. Graph the formula in a rectangular coordinate system.

c. Use the graph to estimate per capita fish consumption in 2020.

d. Use the formula to project per capita fish consumption in 2020.

Section 3.2: GRAPHING LINEAR EQUATIONS USING INTERCEPTS

When you are done with your homework you should be able to...

- π Use a graph to identify intercepts
- π Graph a linear equation in two variables using intercepts
- π Graph horizontal or vertical lines

WARM-UP:

Graph the following equations by plotting points.

b.
$$y = \frac{2}{3}x - 7$$

	3	
X	$y = \frac{2}{3}x - 7$	(x, y)

INTERCEPTS

An	of a graph is the	<u> </u>		of a point where
the graph	the		. The _	
corresponding to an _		_ is always		!!!
A	_ of a graph is the			of a point where
the graph	the		. The _	
corresponding to a		is always _		!!!
Example 1: Use the gra	ph to identify the			
a. x-intercept		b. y-int	tercept	

GRAPHING USING INTERCEPTS

An equation of the form ______, where _____, ____, and _____ are integers, is called the ______ form of a line.

STEPS FOR USING INTERCEPTS TO GRAPH Ax + By = C

1. Find the	. Let	and solve for
2. Find the	. Let	and solve for
3. Find a checkpoint, a	ordered-pair	
4. Graph the equation by drawing a	a	_ through the points.

Example 2: Graph using intercepts and a checkpoint.

a. x + y = 6

b. 3x - 2y = -7

3x - 2y = -7	(x, y)

EQUATIONS OF HORIZONTAL AND VERTICAL LINES

We know that the graph of any equation of the form ______ is a

_____ as long as _____ and _____ are not both _____. What happens

if _____, but not both, is zero?

HORIZONTAL AND VERTICAL LINES

The graph of	_ is a	line. The
is		

The graph of ______ is a ______ line. The ______

is _____.

Example 3: Graph.

a. *y* = 8

b. 12x = -60

APPLICATION

A new car worth \$24,000 is depreciating in value by \$3000 per year. The mathematical model y = -3000x + 24000 describes the car's value, y, in dollars, after x years.

a. Find the *x*-intercept. Describe what this means in terms of the car's value.

b. Find the y-intercept. Describe what this means in terms of the car's value.

c. Use the intercepts to graph the linear equation.

d. Use your graph to estimate the car's value after five years.

Section 3.3: SLOPE

When you are done with your homework you should be able to...

- π Compute a line's slope
- $\pi~$ Use slope to show that lines are parallel
- $\pi~$ Use slope to show that lines are perpendicular
- π Calculate rate of change in applied situations

WARM-UP:

Graph each equation.

a.
$$y - 2 = 0$$

b. -2x - 3y = 9

-2x - 3y = 9	(x, y)

THE SLOPE OF A LINE

Mathematicians ha	ve developed a useful		of the
	of a line, called the _		of the line. Slope
compares the	cha	nge (the) to the
	change (the) when mo	ving from one

point to another along the line.

DEFINITION OF SLOPE

The	of the line through the	distinct points	and
is			
where	It is common to u	use the letter	_ to represent
the slope of a line. This	s letter is used because	it is the first lette	r of the French
verb monter, meaning t	o rise, or to ascend.		

Example 1: Find the slope of the line passing through each pair of points:

a. (-1,4) and (3,-6)b. $\left(8,\frac{3}{2}\right)$ and $\left(-\frac{5}{2},7\right)$ Example 2: Use the graph to find the slope of the line

POSSIBILITIES FOR A LINE'S SLOPE

POSI TI VE SLOPE	NEGATI VE SLOPE	ZERO SLOPE	UNDEFI NED SLOPE

SLOPE AND PARALLEL LINES

Two	lines that lie in the structure of	he same plane are
	If two lines do not	, the of
the_	change to the	change is the
	for each Because tw	o parallel lines have the same
	, they must have the same	·
1.	If two nonvertical lines are	, then they have the same
2.	If two distinct nonvertical lines have the sam	ne, then they
3.	Two distinct vertical lines, each with	slope, are
SLO	PE AND PERPENDICULAR LINES	
Two	lines thatat a	
() are said to be	
1.	If two nonvertical lines are	, then the
	of their is	
2.	If the of the	of two lines is,
	then the lines are	

Example 3: Determine whether the lines through each pair of points are parallel, perpendicular, or neither.

a. (-2, -15) and (0, -3); (-12, 6) and (6, 3)

b.
$$(-2, -7)$$
 and $(3, 13)$; $(-1, -9)$ and $(5, 15)$

C.
$$(-1,-11)$$
 and $(0,-5)$; $(0,-8)$ and $(12,-6)$

APPLICATION

Construction laws are very specific when it comes to access ramps for the disabled. Every vertical rise of 1 foot requires a horizontal run of 12 feet. What is the grade of such a ramp? Round to the nearest tenth of a percent.

Section 3.4: THE SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE

When you are done with your homework you should be able to...

- $\pi~$ Find a line's slope and y-intercept from its equation
- π Graph lines in slope-intercept form
- π Use slope and y-intercept to graph Ax + By = C
- $\pi~$ Use slope and y-intercept to model data

WARM-UP:

Graph each equation.

4x - 8y - 2 = 0	(\mathbf{x},\mathbf{y})
	(x, y)

b. The line which passes through the points (-1,2) and (3,0).

SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE

Example 1: Find the slope and the *y*-intercept of the line with the given equation:

a.
$$y = -4x - 1$$
 b. $6x - y = -1$

c.
$$y = \frac{5}{7}x + 2$$

d. $y = -\frac{x}{3} + \frac{2}{3}$

Example 2: Use the graph to find the equation of the line in slope-intercept form.

GRAPHING BY USING y = mx + b **SLOPE AND** *Y***-INTERCEPT**

1. Plot the point containing the	on the axis.
This is the point	
2. Obtain a second using the	, Write
as a, and use	over,
starting at the	
<i>3.</i> Use a to draw a	through the two
Draw	at the
of the line to show that the line continues	in both
directions.	

Example 3: Graph using the slope and *y*-intercept.

a. y = -5x + 3

b.
$$10x - 5y = 25$$

c. x = 2y - 3

d.
$$-y = x - 1$$

e.
$$y = -\frac{6}{7}x + 4$$

APPLICATION

Write an equation in the form of y = mx + b of the line that is described.

1. The *y*-intercept is -4 and the line is parallel to the line whose equation is 2x + y = 8.

2. The line falls from left to right. It passes through the origin and a second point with opposite *x*- and *y*-coordinates.

Section 3.5: THE POINT-SLOPE FORM OF THE EQUATION OF A LINE

When you are done with your homework you should be able to...

- $\pi~$ Use the point-slope form to write equations of a line
- $\pi~$ Find slopes and equations of parallel and perpendicular lines
- $\pi~$ Write linear equations that model data and make predictions

WARM-UP:

1. Simplify.

2-5[2-(7x+2)]

2. Graph the equation using the slope and *y*-intercept.

$$-\frac{x}{3}-\frac{y}{4}=1$$

POINT-SLOPE FORM

We can use the	of a line to obtain anot	ther useful form of the
line's equation. Consider a no	nvertical line that has slope	and contains the
point Now	<pre>/ let represent any c</pre>	other on
the Keep	in mind that the point	is
and is	in	
position. The point	is	·

POINT-SLOPE FORM OF THE EQUATION OF A LINE

Example 1: Write the point-slope form of the equation of the line with the given slope that passes through the given point.

a.
$$m = -2; (5, -11)$$

b. $m = \frac{5}{8}; (\frac{1}{4}, 7)$

c.
$$m = 0; (-21, 5)$$

Example 2: Use the graph to find two equations of the line in point-slope form.

Now write the slope-intercept form:

1.

2.

EQUATIONS OF LINES

FORM	WHAT YOU SHOULD KNOW
Standard Form	Graph equations in this form using and a
y = b	Graph equations in this form as lines with as the
x = a	Graph equations in this form as lines with as the
Slope-Intercept Form	Graph equations in this form using the, and the slope, *Start with this form when writing a equation if you know a line's and
Point-Slope Form	Start with this form when writing a linear equation if you know the of the line and a on the NOT containing the OR points on the line, of which contains the Calculate the using
PARALLEL AND PERPENDICULAR LINES

Recall that parallel lines have the ______ and perpendicular lines have ______ which are ______

Example 3: Use the given conditions to write an equation for each line in pointslope form and slope-intercept form.

a. Passing through (-2, -7) and parallel to the line whose equation is y = -5x + 4.

b. Passing through (-4,2) and perpendicular to the line whose equation is $y = -\frac{1}{3}x + 7$.

c. Passing through (5, -9) and parallel to the line whose equation is x + 7y = 12.

Section 4.1: SOLVING SYSTEMS OF LINEAR EQUATIONS BY GRAPHING

When you are done with your homework you should be able to...

- π Decide whether an ordered pair is a solution of a linear system
- π Solve systems of linear equations by graphing
- π Use graphing to identify systems with no solution or infinitely many solutions
- $\pi~$ Use graphs of linear systems to solve problems

WARM-UP:

1. Determine if the given number or ordered pair is a solution to the given equation.

a.
$$5x+3=21; \frac{18}{5}$$
 b. $-x+2y=0; (4,1)$

2. Graph the line which passes through the points (0,1) and (-5,3).

SYSTEMS OF LINEAR EQUATIONS AND THEIR SOLUTIONS

We have seen that all _		in the form		are
straight	_ when graphed	such equ	uations	are called a
01	F			or a
		. A		_ to a system
of two	equations in two		_ is an	
	that _			
equations in the				

Example 1: Determine whether the given ordered pair is a solution of the system.

а.	
(-2,-5)	b.
6x - 2y = -2	(10,7)
3x + y = -11	6x - 5y = 25
	4x + 15 y = 13

SOLVING LINEAR SYSTEMS BY GRAPHING

The	of a	of two linear	equations in
	_ variables can be found by _		of the
	in the	rectangular	
system.	For a system with	solution, the	of
the poin	t of	give the	solution.

STEPS FOR SOLVING SYSTEMS OF TWO LINEAR EQUATIONS IN TWO VARIABLES, x AND y, BY GRAPHING

1.	Graph the first
2.	the second equation on the set of
3.	If the representing the graphs
	at a of this point of
	intersection. The is the
	of the
4.	the in equations.

Example 2: Use the graph below to find the solution of the system of linear equations.

Example 3: Solve each system by graphing. Use set notation to express solution sets.

$$x + y = 2$$

 $x - y = 4$
 $y = 3x - 4$
 $y = -2x + 1$

a.

LINEAR SYSTEMS HAVING NO SOLUTION OR INFINITELY MANY SOLUTIONS

We have seen that a ______ of linear equations in _____

variables represents a ______ of _____. The lines either

______ at _____ point, are ______, or are

_____. Thus, there are ______ possibilities for

the ______ of solutions to a system of two linear equations.

THE NUMBER OF SOLUTIONS TO A SYSTEM OF TWO LINEAR EQUATIONS

NUMBER OF SOLUTIONS	WHAT THIS MEANS GRAPHICALLY	
Exactly ordered pair solution.	The two lines at point. This is a system.	
Solution	The two lines are This is an system.	
many solutions	The two lines are This is a system with equations.	

Example 4: Solve each system by graphing. If there is no solution or infinitely many solutions, so state. Use set notation to express solution sets.

a. x + y = 42x + 2y = 8

b.

y = 3x - 1y = 3x + 2

C.

$$2x - y = 0$$
$$y = 2x$$

APPLICATION

A band plans to record a demo. Studio A rents for \$100 plus \$50 per hour. Studio B rents for \$50 plus \$75 per hour. The total cost, y, in dollars, of renting the studios for x hours can be modeled by the linear system

$$y = 50x + 100$$
$$y = 75x + 50$$

a. Use graphing to solve the system. Extend the *x*-axis from 0 to 4 and let each tick mark represent 1 unit (one hour in a recording studio). Extend the *y*-axis from 0 to 400 and let each tick mark represent 100 units (a rental cost of \$100).

b. Interpret the coordinates of the solution in practical terms.

When you are done with your 4.2 homework you should be able to...

- π Solve linear systems by the substitution method
- $\pi~$ Use the substitution method to identify systems with no solution or infinitely many solutions
- π Solve problems using the substitution method

WARM-UP:

1. Solve.

-5x + 3(2x - 7) = x - 21

2. Solve the following system of linear equations by graphing. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$y = -4x + 6$$
$$y = -2x$$

Steps for Solving a System of Two Linear Equations Containing Two Variables by Substitution

1. Solve one of the equations for on	e of the unknowns.				
2. Substitute the expression solved	for in Step 1 into the other equation. The				
·	· ·				
result will be a	equation in variable.				
3 the linear equation in one variable found in Step 2					
••• <u> </u>					
4 the value of the variable found in Step 3 into one of					
the original equations to find the	of the other				
the original equations to this the					
,					
5 Check your answer by	the				
	(110				
into	of the original equations.				

Example 1: Solve the following systems of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

a. 5x + 2y = -5 3x - y = -14 b.

$$y = 5x - 3$$
$$y = 2x - \frac{21}{5}$$

π	Suppose you are solving a system of equations and you end up with 5 = 0. Thi			
	is a and yields a result of or			
	This system consists of two lines which never			
	·			
π	π Suppose you are solving a system of equations and you end up with 5 = 5 or			
	x = x. This is an and yields a result of all			
	which are on the In other words, the			
	system would have solutions.			
	This system consists of two lines which are			

Example 2: Solve the following systems of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Graph the system.

$$-x + 3y = 4$$
$$2x - 6y = -8$$

b.

$$x - 5y = 3$$
$$-2x + 10y = 8$$

Example 3: Write a system of equations that has infinitely many solutions.

APPLI CATI ONS

1. Christa is a waitress and collects her tips at the table. At the end of the shift she has 68 bills in her tip wallet, all ones and fives. If the total value of her tips is \$172, how many of each bill does she have?

2. Melody wishes to enclose a rectangular garden with fencing, using the side of her garage as one side of the rectangle. A neighbor gave her 30 feet of fencing, and Melody wants the length of the garden along the garage to be 3 feet more than the width. What are the dimensions of the garden?

When you are done with your 4.3 homework you should be able to...

- π Solve linear systems by the addition method
- $\pi~$ Use the addition method to identify systems with no solution or infinitely many solutions
- π Determine the most efficient method for solving a linear system

WARM-UP:

1. Solve the following system of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$y = \frac{7}{2}x - 3$$
$$y = -4x + 2$$

ELIMINATING A VARIABLE USING THE ADDITION METHOD

The ______ method is most useful if one of the equations has an ______ variable. A third method for solving a linear system is the ______ method. The addition method _______ a variable by ______ the equations. When we use the addition method, we want to obtain two equations whose ______ is an equation containing

only ______ variable. The key step is to obtain, for one of the variables,

_____ that differ only in ______.

Steps for Solving a System of Two Linear Equations Containing Two Variables by Addition

1. If necessary, both equations in the form				
2. If necessary, either equation or both equations by				
appropriate nonzero numbers so that the of the x-coefficients				
or y-coefficients is				
3 the equations in step 2. The is an				
in variable.				
4 the equation in one variable.				
5				
the equations and for the other variable.				
6 the solution in of the original equations.				

Example 1: Solve the following systems of linear equations by the addition method. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.

a.
$$x + y = 6$$

 $x - y = -2$

b.

$$3x - y = 11$$
$$2x + 5y = 13$$

COMPARING SOLUTION METHODS

CREATED BY SHANNON MARTIN GRACEY

GRAPHI NG	You can the	If the solutions do not involve
	·	or are too
		or to
		be on the graph, it's
		impossible to tell exactly what
		the are.
SUBSTI TUTI ON	Gives	Solutions cannot be
	solutions. Easy to use if a	Can introduce extensive work with
	is on	when no variable
	side by itself.	has a coefficient of or
		·
ADDI TI ON	Gives	Solutions cannot be
	solutions. Easy to use!	- <u></u> .

Example 2: Solve the following systems of linear equations by any method. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.

а.

$$2x + 5y = -6$$
$$7x - 2y = 11$$

b. 4x - y = 1y = 7x - 15

C.

$$4x - 2y = 2$$

$$2x - y = 1$$

d. 3x = 4y + 14x + 3y = 1

e.

$$2x + 4y = 5$$

$$3x + 6y = 6$$

Section 4.4: PROBLEM USING SOLVING SYSTEMS OF EQUATIONS

When you are done with your homework you should be able to...

- π Solve problems using linear systems
- π Solve simple interest problems
- π Solve mixture problems
- π Solve motion problems

WARM-UP:

- 1. Solve the system of linear equations using the substitution or the addition method. Determine if the system is consistent or inconsistent, and if the equations are dependent or independent. Give your result in set notation.
- а.

2x - 3y = 43x + 4y = 0

x - y = 32x = 4 + 2y

A STRATEGY FOR SOLVING WORD PROBLEMS USING SYSTEMS OF EQUATIONS

When we solved problems in chapter 2, we let <i>x</i> represent a				
that was	Problems ir	Problems in this section involve		
unknown	We will let	and _	represent	
the	quantities and		the English words	
into a	of	equations		

Example 1: The sum of two numbers is five. I f one number is subtracted from the other, their difference is thirteen. Find the numbers.

Example 2: Each day, the sum of the average times spent on grooming for 15- to 19-year-old women and men is 96 minutes. The difference between grooming times for 15- to 19-year-old women and men is 22 minutes. How many minutes per day do 15- to 19-year-old women and men spend on grooming?

Example 3: A rectangular lot whose perimeter is 1600 feet is fenced along three sides. An expensive fencing along the lot's length costs \$20 per foot. An inexpensive fencing along the two side widths costs only \$5 per foot. The total cost of the fencing along the three sides comes to \$13000. What are the lot's dimensions?

Example 4: On a special day, tickets for a minor league baseball game cost \$5 for adults and \$1 for students. The attendance that day was 1281 and \$3425 was collected. Find the number of each type of ticket sold.

Example 5: You invested \$11000 in stocks and bonds, paying 5% and 8% annual interest. If the total interest earned for the year was \$730, how much was invested in stocks and how much was invested in bonds?

Example 6: A jeweler needs to mix an alloy with a 16% gold content and an alloy with a 28% gold content to obtain 32 ounces of a new alloy with a 25% gold content. How many ounces of each of the original alloys must be used?

A FORMULA FOR MOTION

Distance equals times	

Example 7: When a plane flies with the wind, it can travel 4200 miles in 6 hours. When the plane flies in the opposite direction, against the wind, it takes 7 hours to fly the same distance. Find the rate of the plane in still air and the rate of the wind. Example 8: With the current, you can row 24 miles in 3 hours. Against the same current, you can row only 2/3 of this distance in 4 hours. Find your rowing rate in still water and the rate of the current.

Section 5.1: ADDI NG AND SUBTRACTI NG POLYNOMI ALS

When you are done with your homework you should be able to...

- π -Understand the vocabulary used to describe polynomials
- π Add polynomials
- π Subtract polynomials
- $\pi~$ Graph equations defined by polynomials of degree 2

WARM-UP:

Simplify:

 $-6x+5y-2x^2-2y+x^2$

DESCRIBING POLYNOMIALS

Α	is a	term or the		of two
or more	containing		with	
number	It is customary	y to write the		in the
order of	powers of th	e	· -	This is the
	_ form of a		We begin t	his chapter
by limiting discussion	to polynomials containi	ng	_ variable. E	ach term of
such a	in is	s of the form _		The
of	is			

THE DEGREE OF ax^n

Example 1: I dentify the terms of the polynomial and the degree of each term.

a.
$$-4x^5 - 13x^3 + 5$$
 b. $-x^2 + 3x - 7$

A polynomial is		when it	contains r	וס	symbols
and no			A simplifie	ed polynomial tha	at has
exactly	term is called	d a		A simpli	fied
polynomial that has		_ terms is	called a _		and a
simplified polynomial	with	te	rms is call	led a	·
Simplified polynomials	s with	(or more	have	no special
names. The	of	fa		is the	
c	legree of		_ the	of a	i
	·				

Example 2: Find the degree of the polynomial.

a. $5x^2 - x^8 + 16x^4$ b. -2

ADDING POLYNOMIALS

 Recall that ______ are terms containing ______ the

 same ______ to the ______ powers. ______ are added

 by ______.

Example 3: Add the polynomials.

a. (8x-5)+(-13x+9)

b.
$$(7y^3+5y-1)+(2y^2-6y+3)$$

c.
$$\left(\frac{2}{5}x^4 + \frac{2}{3}x^3 + \frac{5}{8}x^2 + 7\right) + \left(-\frac{4}{5}x^4 + \frac{1}{3}x^3 - \frac{1}{4}x^2 - 7\right)$$

d.

$$7x^2 - 5x - 6$$
$$-9x^2 + 4x + 6$$

SUBTRACTING POLYNOMIALS

We	_ real numbers by	the	of
the number being	Su	btraction of polynomials a	lso involves
	If the sum of tw	o polynomials is	, the
polynomials are	of	each other.	
Example 4: Find the	opposite of the polyno	omial.	
a. <i>x</i> +8		b. $-12x^3 - x + 1$	

SUBTRACTING POLYNOMIALS

То	two polynomials,	the first polynomial and the
	of the second polynomi	al

Example 5: Subtract the polynomials.

a.
$$(x-2)-(7x+9)$$

b.
$$(3x^2 - 2x) - (5x^2 - 6x)$$

c.
$$\left(\frac{3}{8}x^2 - \frac{1}{3}x - \frac{1}{4}\right) - \left(-\frac{1}{8}x^2 + \frac{1}{2}x - \frac{1}{4}\right)$$

d.

$$3x^{5} - 5x^{3} + 6$$
$$-(7x^{5} + 4x^{3} - 2)$$

GRAPHING EQUATIONS DEFINED BY POLYNOMIALS

Graphs of equations defined by ______ of degree _____ have a

_____ quality. We can obtain their graphs, shaped like

_____ or _____ bowls, using the ______-

_____ method for graphing an equation in two variables.

Example 6: Graph the following equations by plotting points.

a.
$$y = x^2 - 1$$

b. $y = 9 - x^2$

x	$y = 9 - x^2$	(x, y)

Section 5.2: MULTI PLYI NG POLYNOMI ALS

When you are done with your homework you should be able to...

- π Use the product rule for exponents
- $\pi~$ Use the power rule for exponents
- $\pi~$ Use the products-to-power rule
- π Multiply monomials
- π Multiply a monomial and a polynomial
- π Multiply polynomials when neither is a monomial

WARM-UP:

Add or subtract the following polynomials:

a.
$$(-22r^7 + 6r^3 - r^2) - (2r^7 + r^2 - 1)$$

b. $(8x^4 - x^3 - x^2) + (-8x^4 + x^3)$

THE PRODUCT RULE FOR EXPONENTS

We have seen that ______ are used to indicate _____

multiplication. Recall that $3^4 =$ _____. Now consider $3^4 \cdot 3^2$:

THE PRODUCT RULE

When multiplying		expressi	ons with the	base,
the		Use this	as the	of
the	base.			

Example 1: Simplify each expression.

a.
$$2^5 \cdot 2^3$$
 b. $x^2 \cdot x \cdot x^4$

THE POWER RULE (POWERS TO POWERS)

When an		is	to a
//	_ the		. Place the
of the		_on the	and
the		·	

Example 2: Simplify each expression.

a.
$$(4^2)^3$$
 b. $(x^{12})^5$

THE PRODUCTS-TO-POWERS RULE FOR EXPONENTS

When a	is	to a, _	
each	_ to the		

Example 3: Simplify each expression.

a. $(-2y)^5$ b. $(10x^3)^2$

MULTIPLYING MONOMIALS

То	with the	
base,	the	and
then multiply the	Use the	_ rule for
to multiply the	·	
Example 4: Multiply.		

d. $(8x)(-11x^4)$ e. $(7y^3)(2y^2)$ f. $(\frac{2}{5}x^4)(-\frac{5}{6}x^7)$

MULTIPLYING A MONOMIAL AND A POLYNOMIAL THAT IS NOT A MONOMIAL

Example 5: Multiply.

a.
$$3x^2(2x-5)$$
 b. $-x(x^2+6x-5)$

MULTIPLYING POLYNOMIALS WHEN NEITHER IS A MONOMIAL

Multiply each of or	e by each
of the other polynomial. The	n
terms.	

Example 6: Multiply.

a.
$$(x+2)(x+5)$$

b. (2x+5)(x+3)

c.
$$(x^2 - 7x + 9)(x + 4)$$

Example 7: Simplify.

a.
$$3x^2(6x^3+2x-3)-4x^3(x^2-5)$$

b.
$$(y+6)^2 - (y-2)^2$$
APPLICATION

a. Express the area of the large rectangle as the product of two binomials.

b. Find the sum of the areas of the four smaller rectangles.

c. Use polynomial multiplication to show that your expressions for area in parts(a) and (b) are equal.

Section 5.3: SPECIAL PRODUCTS

When you are done with your homework you should be able to...

- π Use FOLL in polynomial multiplication
- π Multiply the sum and difference of two terms
- $\pi~$ Find the square of a binomial sum
- $\pi~$ Find the square of a binomial difference

WARM-UP:

Multiply the following polynomials:

a.
$$(x-1)^2$$
 b. $(x-5)(x+5)$

THE PRODUCT OF TWO BINOMIALS: FOIL

F represents the ______ of the ______ terms in each

_____ of the _____

terms, I represents the ______ of the _____ terms, and

L represents the ______ of the ______ terms.

USING THE FOIL METHOD TO MULTIPLY BINOMIALS

Example 1: Multiply using FOIL.

a.
$$(5x+3)(3x+8)$$
 b. $(x-10)(x+9)$

THE PRODUCT OF THE SUM AND DIFFERENCE OF TWO TERMS

$(A+B)(A-B) = _____$			
The	of the	and the	of the
	two terms is the	of the	
	the	of the second.	

Example 2: Multiply.

a. (x+4)(x-4)

b.
$$(3x-7y)(3x+7y)$$

THE SQUARE OF A BINOMIAL SUM		
$(A+B)^2 = $		
The of a	is the	
term	times the of the terms	
the last term _		

Example 3: Multiply.

a.
$$(x+6)^2$$
 b. $(x^2+9)^2$

THE SQUARE OF A BINOMIAL DIFFERENCE

a. $(5x - y)^2$

b. $(x^3 - 11)^2$

Section 5.4: POLYNOMI ALS IN SEVERAL VARIABLES

When you are done with your homework you should be able to...

- π Evaluate polynomials in several variables
- π Understand the vocabulary of polynomials in two variables
- $\pi~$ Add and subtract polynomials in several variables
- π Multiply polynomials in several variables

WARM-UP:

Evaluate the polynomial:

 $x^{3}y + 2xy^{2} + 5x - 2$; x = -2 and y = 3

EVALUATING A POLYNOMIAL IN SEVERAL VARIABLES

1 the giv	ven value for each	
2. Perform the resulting	using the	
of	·	
DESCRIBING POLYNOMIALS IN TWO VARIABLES		
In general, a	in,,,,	
and, contains the	of one or morein	
the form The co	nstant,, is the	
The,,	and, represent	
numbers. The	of the	
is		

Example 1: Determine the coefficient of each term, the degree of each term, and the degree of the polynomial.

 $8xy^4 - 17x^5y^3 + 4x^2y - 9y^3 + 7$

ADDING AND SUBTRACTING POLYNOMIALS IN SEVERAL VARIABLES

Example 2: Add or subtract.

a.
$$(x^3 - y^3) - (-4x^3 - x^2y + xy^2 + 3y^3)$$

b.
$$(7x^2y+5xy+13)+(-3x^2y+6xy+4)$$

MULTIPLYING POLYNOMIALS IN SEVERAL VARIABLES

The	of	the basis of
		can be done
by		and
	on	with the

Example 3: Multiply.

a.
$$(5xy^3)(-10x^2y^4)$$

c. $(x-2y^4)(x+2y^4)$

b.
$$-x^7 y^2 (x^2 + 7xy - 4)$$
 d. $(x^2 - y)^2$

Section 5.5: DI VI DI NG POLYNOMI ALS

When you are done with your homework you should be able to...

- π Use the quotient rule for exponents
- $\pi~$ Use the zero-exponent rule for exponents
- π Use the quotients-to-power rule
- π Divide monomials
- π Check polynomial division
- π Divide a polynomial by a monomial

WARM-UP:

1. Find the missing exponent, designated by the question mark, in the final step:

$$\frac{x^8}{x^3} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = x^?$$

2. Simplify:

$$\frac{\left(2a^3\right)^5}{\left(b^4\right)^5}$$

THE QUOTIENT RULE FOR EXPONENTS

When dividing	expressions v	vith the	nonzero
base,	the exponent in the		from the
	in the	Use this	
	as the	of the	
base.			

Example 1: Simplify each expression.

a.
$$\frac{2^5}{2^3}$$
 b. $\frac{x^{10}}{x^8}$

THE ZERO-EXPONENT RULE

Example 2: Simplify each expression.

a. $(4^2)^0$

b. $-7x^{0}$

THE QUOTIENTS-TO-POWERS RULE FOR EXPONENTS

If and	_ are real numbers and	_ is nonzero, then	
When a	is	to a, _	
the	to the	_ and	_ by the
	raised to the	·	

Example 3: Simplify each expression.

DIVIDING MONOMIALS

То		the
	and then divide the	·
Use the	rule for	_ to divide the

Example 4: Divide.

a.
$$\frac{16x^4}{2x^4}$$
 b. $\frac{6x^2y^5}{21xy^3}$ c. $\frac{35r^8}{14r^7}$

DIVIDING A POLYNOMIAL THAT IS NOT A MONOMIAL BY A MONOMIAL

Example 5: Find the quotient.

a.
$$(24x^6 - 12x^4 + 8x^3) \div (4x^3)$$

b. $\frac{459x^{10}y^9 + 18x^5y^3 - 9x^4y}{-9x^3y}$

Section 5.6: LONG DIVISION OF POLYNOMIALS AND SYNTHETIC DIVISION

When you are done with your homework you should be able to...

- $\pi~$ Use long division to divide by a polynomial containing more than one term
- π Divide polynomials using synthetic division

WARM-UP:

a. Divide using long division:

56)1234567

b. Simplify:

$$\frac{5x^5 - 8x^3 + x^2}{2x^2}$$

1.	the terms of	the and
	the in	powers of the variable.
2.	the	term in the by
	the term in the	The result is the
	term of the	
3.	every term in the	by the
	term in the	Write the resulting
	beneath the	with
4.	terms lined up. the	from the
5.	down the next t	erm in the
	dividend and write it next to the	to form a new
6.	 Use this new expression as the	and repeat the
	process until the	can no longer be
	This will occur	when the of the
	is	than the of
	the	

STEPS FOR DIVIDING A POLYNOMIAL BY A BINOMIAL

Example 1: Divide.

a.
$$\frac{x^2 + 7x + 10}{x + 5}$$

b.
$$\frac{2y^2 - 13y + 21}{y - 3}$$

c.
$$\frac{x^3 + 2x^2 - 3}{x - 2}$$

d.
$$(8y^3 + y^4 + 16 + 32y + 24y^2) \div (y+2)$$

We can use	division to di	vide if the
	is of the form	This method provides a
	more quickly than	division.
STEPS FOR SY	NTHETIC DIVISION	
1. Arrange th	ne in	powers, with
a	_ coefficient for any	term.
2. Write	for the,	To the,
write the _	of the	
3. Write the		of the
	on the	_ row.
4	times the	just written on the
	row. Write the	in the next
	in the	_ row.
5	_ the values in this new column, w	riting the in the
	row.	
6. Repeat this	s series of	and
until all	are filled in.	

7. Use the numbers in the last row to write	the plus the
	the The
of the	term of the quotient will be
less than the	of the first term of the
The final value	in this row is the

Example 2: Divide using synthetic division.

a. $(x^2 + x - 2) \div (x - 1)$

b.
$$(x^2 - 6x - 6x^3 + x^4) \div (6 + x)$$

c.
$$\frac{x^7 - 128}{x - 2}$$

d.
$$(y^5 - 2y^4 - y^3 + 3y^2 - y + 1) \div (y - 2)$$

APPLICATION

You just signed a contract for a new job. The salary for the first year is \$30,000 and there is to be a percent increase in your salary each year. The algebraic expression

$$\frac{30000x^n - 30000}{x - 1}$$

describes your total salary over *n* years, where *x* is the sum of 1 and the yearly percent increase, expressed as a decimal.

- a. Use the given expression and write a quotient of polynomials that describes your total salary over four years.
- b. Simplify the expression in part (a) by performing the division.

c. Suppose you are to receive an increase of 8% per year. Thus, *x* is the sum of 1 and 0.08, or 1.08. Substitute 1.08 for *x* in the expression in part (a) as well as the simplified expression in part (b). Evaluate each expression. What is your total salary over the four-year period?

Section 5.7: NEGATIVE EXPONENTS AND SCIENTIFIC NOTATION

When you are done with your homework you should be able to...

- $\pi~$ Use the negative exponent rule
- π Simplify exponential expressions
- π Convert from scientific notation to decimal notation
- π Convert from decimal notation to scientific notation
- π Compute with scientific notation
- π Solve applied problems using scientific notation

WARM-UP:

1. Divide:

$$\left(7x^4-8x\right)\div\left(x+3\right)$$

2. Simplify:

NEGATIVE INTEGERS AS EXPONENTS

A nonzero base can be raised to a _____ power. The

_____ rule can be used to help determine what a ______

_____ as an _____ should mean.

THE NEGATIVE EXPONENT RULE

If is any real number other than and is	a natural number, then

NEGATIVE EXPONENTS IN NUMERATORS AND DENOMINATORS

If is any real number other than	n and is a natural number, then
When a number and	
	ears as an,
the position of the	(from to
or from	to)
and make the	The sign of the
does	change.

Example 1: Write each expression with positive exponents only. Then simplify, if possible.

a.
$$-7^{-2}$$
 c. $3^{-1} - 6^{-1}$

b.
$$(-7)^{-2}$$
 d. $\frac{x^{-12}}{y^{-1}}$

SIMPLIFYING EXPONENTIAL EXPRESSIONS

Properties of		are used to	
exponential expressions. An exponential is			is
		_ when	
π	Each	occurs only	
π	No	appear	
π	No	are raised to	
π	No	or exp	onents appear

STEPS FOR SIMPLIFYING EXPONENTIAL EXPRESSIONS

1. If necessary, be sure that eac	h appears only,	
using	or	
2. If necessary,	parentheses using	
or		
3. If necessary, simplify	to using	
4. If necessary,	exponential expressions with	
powers as (). Furthermore, write the answer with	
exponents using		

Example 2: Simplify. Assume that variables represent nonzero real numbers.

a.
$$\frac{45z^4}{15z^{12}}$$
 c. $\frac{(5x^3)^2}{x^7}$

b.
$$\frac{(3y^4)^3 y^{-7}}{y^7}$$
 d. $(\frac{x^3}{y^2})^{-4}$

SCIENTIFIC NOTATION

Α	number is written in		_ notation when
it is expressed in the	form		
where is a numb	oer th	nan or equal to	and
than () and .	is an	·
It is customary to use	e the	symbol,	, rather than a
dot, when writing a nu	mber in		
can use, the exp	oonent on the i	n	, to change a
number in scientific n	otation to	notation. If	is
	, move the decimal poin	t in to the	
places. I f	_ is	, move the decim	al point in
to the	places.		
Example 3: Write eac	h number in decimal no	tation.	
a. 7.85×10 ⁸		c. 1.001×10^2	

b. 9×10^{-5} d. 9.999×10^{-1}

|--|

Write the number in the form			
π Determine, the numerical	Move the		
point in the	number to obtain a number		
than or equal to	and than		
π Determine, the	on The		
of is th	ne of places the		
decimal point was	The exponent is		
if the given number is	than and		
if the given number is	and		

Example 4: Write each number in scientific notation.

a. 0.0000006589

c. 0.234

b. 6,789,000,000,000

d. 1,000,234,000

COMPUTATIONS WITH NUMBERS IN SCIENTIFIC NOTATION

MULTIPLICATION
DIVISION
EXPONENTIATION
After the computation is may
require an additional before it is expressed in
notation.
Example 5: Perform the indicated operations, writing the answers in scientific notation.

a. $(3 \times 10^4)(4 \times 10^2)$ b. $(2 \times 10^{-3})^5$

c.
$$\frac{180 \times 10^8}{2 \times 10^4}$$

d.
$$(5 \times 10^4)^{-1}$$

APPLICATIONS

1. A human brain contains 3×10^{10} neurons and a gorilla brain contains 7.5×10^{9} neurons. How many times as many neurons are in the brain of a human as in the brain of a gorilla?

2. If the sun is approximately 9.14×10^7 miles from the earth, how many seconds, to the nearest tenth of a second does it take sunlight to reach Earth? Use the motion formula, d = rt, and the fact that light travels at the rate of 1.86×10^5 miles per second.

Section 6.1: THE GREATEST COMMON FACTOR AND FACTORING BY GROUPING

When you are done with your homework you should be able to...

- $\pi~$ Find the greatest common factor (GCF)
- $\pi~$ Factor out the GCF of a polynomial
- π Factor by grouping

WARM-UP:

1. Multiply:

 $x^2 \left(7 x^4 - 8\right)$

2. Divide:

$$\frac{16x^4-8x^2}{4x^2}$$

FACTORING A ______ CONTAINING THE SUM OF _____ MEANS FINDING AN ______ EXPRESSION THAT IS A ______.

FACTORING OUT	THE GREATEST CC	MMON FACTOR (GC	F)
We use the	pr	operty to	a monomial
and a	of	or more	
When we	, we	this p	rocess, expressing
the	as a		
MULTIPLICA	ΤΙΟΝ	FACTO	RING
I n any	pro	blem, the first step is	to look for the
is ar			degree
is a that	each	of the	uogi oo
The	part of the _	alway	rs contains the
		of a	that
appears in	terms of the _		·
Example 1: Find the	greatest common fa	ctor of each list of mo	onomials:
a. 5 and 15 <i>x</i>			
b. $-3x^4$ and $6x^3$			
c. $x^2 y$, $7x^3 y$ and 1	$4x^2$		

STEPS FOR FACTORING A MONOMIAL FROM A POLYNOMIAL

1. Determine the		factor of
terms in the	·	
2. Express each	as the	of the
and its other	·	
3. Use the		_ to factor out the

Example 2: Factor each polynomial using the GCF:

- a. 9*x*+9
- b. 32x 24
- c. $18x^3y^2 12x^3y 24x^2y$
- d. 7(x+1)+21x(x+1)

FACTORING BY GROUPING

1.	terms that have a		
	factor. There will usually be grou	ps. Sometimes the terms must be	
	- <u></u> .		
2.	out the	monomial	
	from each		
3.	(if one exists).	mon factor	
Example 3: Factor by grouping:			
a.	$x^2 + 3x + 5x + 15$ c.	xy - 6x + 2y - 12	

b.
$$x^3 - 3x^2 + 4x - 12$$

d. $10x^2 - 12xy + 35xy - 42y^2$

Example 4: Factor each polynomial:

a.
$$x^3 - 5 + 2x^3y - 10y$$

c. $8x^5(x+2) - 10x^3(x+2) - 2x^2(x+2)$

b.
$$7x^5 - 7x^4 + x^3 - x^2 + 3x - 3$$

d. $12x^2 - 25$

APPLICATION

An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The polynomial $72x-16x^2$ describes the height of the debris above the ground, in feet, after *x* seconds.

a. Find the height of the debris after 4 seconds.

b. Factor the polynomial.

c. Use the factored form of the polynomial in part (b) to find the height of the debris after 4 seconds. Do you get the same answer as you did in part (a)? If so, does this prove that your factorization is correct?

Section 6.2: FACTORING TRINOMIALS WHOSE LEADING COEFFICIENT IS 1 When you are done with your homework you should be able to...

 π Factor trinomials of the form $x^2 + bx + c$

WARM-UP:

Multiply:

a. (x+1)(x+8)c. (x+1)(x-8)

b.
$$(x-1)(x-8)$$

d. $(x-1)(x+8)$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING GROUPING

Example 1: Factor each trinomial

a.
$$x^2 + 9x + 8$$

b.
$$x^2 + 7x + 10$$

c.
$$x^2 - 13x + 40$$

d. $x^2 + 3x - 28$

e.
$$x^2 - 4x - 5$$

f. $w^2 + 12w - 64$

g. $y^2 - 15y + 5$

h. $x^2 - 9xy + 14y^2$

Some	can be	using more than one
	Always begin b	by looking for the
		and, if there is one, it
out! A polynomial is		when it is written as
the	of	
Example 4: Factor com	pletely	
a. $3x^2 + 21x + 36$		b. $20x^2y - 5xy - 120y$
c.
$$y^4 - 12y^3 + 35y^2$$

d.
$$(a+b)x^2 - 13(a+b)x + 36(a+b)$$

APPLICATION

You dive directly upward from a board that is 48 feet high. After *t* seconds, your height above the water is described by the polynomial $-16t^2 + 32t + 48$.

a. Factor the polynomial completely.

b. Evaluate both the original polynomial and its factored form for t = 3.

c. Do you get the same answer? Describe what this answer means?

Section 6.3: FACTORING TRINOMIALS WHOSE LEADING COEFFICIENT IS NOT 1

When you are done with your homework you should be able to...

- $\pi~$ Factor trinomials by trial and error
- $\pi~$ Factor trinomials by grouping

WARM-UP:

Factor:

a.
$$x^2y - xy^2$$
 c. $2x^3 - 6x^2 + 4x$

b.
$$x^2 - 14x - 51$$
 d.

 $z^{2} + z - 72$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING TRIAL AND ERROR

Assur	Assume, for the moment, that there is no				
facto	or other than				
1.	two First	whose	is		
2	twolast	whose	ic		
Ζ.	two Last	whose	13		
2	Py and	norform stone 1	and 2 until the		
J.	Dy and	, perform steps f			
	of the Outside _	and the I ns	side		
	is	·			
lf_	such	exist, the polynomia	l is		

Example 1: Factor using trial and error.

a.
$$5x^2 - 14x + 8$$
 b. $6x^2 + 19x - 7$

c.
$$3x^2 - 13xy + 4y^2$$

d.
$$9z^2 + 3z + 2$$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING GROUPING

1. Multiply the leading coefficient and the constant,				
2. Find the of whose is				
3. Rewrite the term,, as a or a				
using the factors from step 2.				
4 by				

Example 1: Factor using grouping.

a.
$$3x^2 - x - 10$$
 b. $8x^2 - 10x + 3$

c.
$$9y^2 + 5y - 4$$

d. $12x^2 + 7xy - 12y^2$

Example 4: Factor completely

a. $4x^2 - 18x - 10$

c. $24y^4 + 10y^3 - 4y^2$

b. $3x^3 + 14x^2 + 8x$

d. $6(y+1)x^2 + 33(y+1)x + 15(y+1)$

Section 6.4: FACTORI NG SPECIAL FORMS

When you are done with your homework you should be able to...

- π $\,$ Factor the difference of two squares $\,$
- π Factor perfect square trinomials
- $\pi~$ Factor the sum of two cubes
- $\pi~$ Factor the difference of two cubes

WARM-UP:

Factor:

a.
$$3a^2 - ab - 14b^2$$

c. $80z^3 + 80z^2 - 60z$

b. $12x^2 - 33x + 21$ d. $-10x^2y^4 + 14xy^4 + 12y^4$

THE DIFFERENCE OF TWO SQUARES

If and	_ are real numbers,	or	_expressions, then
The	of the	of	
factors as the	ofa_	and a _	
of those terms.			
16 PERFECT SQUA	RES		
1=	25 =	81 =	169 =
4 =	36 =	100 =	196 =
9 =	49 =	121 =	225 =
16=	64 =	144 =	256 =
Example 1: Factor.			
a. $x^2 - 144$			10
		c. 25-4.	x^{10}
b $16r^2 - 19$	$6v^2$	- 19- ³	2 r
\mathbf{D} . 10 $\mathbf{\lambda}$ 17	C y	u. 10x -	$\mathbb{Z}\lambda$

FACTORING PERFECT SQUARE TRINOMIALS

Example 2: Factor.

c. $x^2 - 18xy + 81y^2$ a. $9x^2 + 6x + 1$

b.
$$x^2 + 4x + 4$$
 d. $2y^2 - 40y + 200$

FACTORING THE SUM OR DIFFERENCE OF TWO CUBES

Example 3: Factor.

a. $x^3 + 64$

c. $128 - 250y^3$

b. $8y^3 - 1$

d. $125x^3 + y^3$

Example 4: Factor completely

a.
$$25x^2 - \frac{4}{49}$$
 c. $(y+6)^2 - (y-2)^2$

b. $20x^3 - 5x$

d. $0.064 - x^3$

Section 6.5: A GENERAL FACTORING STRATEGY

When you are done with your homework you should be able to...

- π Recognize the appropriate method for factoring a polynomial
- $\pi~$ Use a general strategy for factoring polynomials

WARM-UP:

Multiply:

a. $(x+1)(x^2-x+1)$ b. $(2x-3y)(4x^2+6xy+9y^2)$

A STRATEGY FOR FACTORING A POLYNOMIAL

	of	:	
	of		_:
b.	If there are	_ terms, is the	a
			?lfso,
	factor by one of the following	ng special forms:	
		=	
		=	
	If the trinomial is	a	
	, try	by	and
	or		
C.	If there are	or	terms, try
	by		
3. Chec	k to see if any	with more t	than one term in the
		can be fac	ctored
4.	If so, bv	complete	ely.

Example 1: Factor

a. $5x^4 - 45x^2$

b. $4x^2 - 16x - 48$

c. $4x^5 - 64x$

d.
$$x^3 - 4x^2 - 9x + 36$$

e.
$$3x^3 - 30x^2 + 75x$$

f. $2w^5 + 54w^2$

g. $3x^4y - 48y^5$

h. $12x^3 + 36x^2y + 27xy^2$

i.
$$12x^2(x-1)-4x(x-1)-5(x-1)$$

j.
$$x^2 + 14x + 49 - 16a^2$$

APPLICATION

Express the area of the shaded ring shown in the figure in terms of π . Then factor this expression completely.

Section 6.6: SOLVING QUADRATIC EQUATIONS BY FACTORING

When you are done with your homework you should be able to...

- π Use the zero-product principle
- π Solve quadratic equations by factoring
- π Solve problems using quadratic equations

WARM-UP:

a. Factor:

 $x^2 - 8x + 7$

b. Solve:

x - 7 = 0

DEFINITION OF A QUADRATIC EQUATION

A	in is an equation that can
be written in the	
where,, and	are real numbers, with A
	in is also called a
	equation in

SOLVING QUADRATIC EQUATIONS BY FACTORING

Consider the quadratic equation $x^2 - 8x + 7 = 0$. How is this different from the first warm-up?

We can	the		side of the	
equation	t	o get		If a quadratic
equation has a zero	on one side an	id a		
on the other side, it	can be		using the	
	principle.			
THE ZERO-PRODU	CT PRINCIPL	.E		
		_		
If the	of	two or more		_ expressions is
If the	of	two or more	one of th	expressions is
If the to	of `	two or more	one of th	expressions is
If the to	of	two or more	one of th	expressions is
If the to	of	two or more	one of th	expressions is

Example 1: Solve the following equations:

a. 2x - 11 = 0 b. x + 1 = 0

c. (2x-11)(x+1)=0

STEPS FOR SOLVING A QUADRATIC EQUATION BY FACTORING

Example 2: Solve:

a.
$$x(x+9) = 0$$

b.
$$8(x-5)(3x+11) = 0$$

C.
$$x^2 + x - 42 = 0$$

d.
$$x^2 = 8x$$

e. $4x^2 = 12x - 9$

f. (x+3)(3x+5) = 7

$$g. \quad x^3 - 4x = 0$$

h.
$$(x-3)^2 + 2(x-3) - 8 = 0$$

APPLICATION

An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The formula $h = -16t^2 + 72t$ describes the height of the debris above the ground, *h*, in feet, *t* seconds after the explosion.

a. How long will it take for the debris to hit the ground?

b. When will the debris be 32 feet above the ground?

Section 7.1: RATIONAL EXPRESSIONS AND THEIR SIMPLIFICATION

When you are done with your homework you should be able to...

- $\pi~$ Find numbers for which a rational expression is undefined
- π Simplify rational expressions
- π Solve applied problems involving rational expressions

WARM-UP:

a. Factor:

 $x^3 - 8x^2 + 2x - 16$

b. Solve: $2x^2 - x - 10 = 0$

EXCLUDING NUMBERS FROM RATIONAL EXPRESSIONS

Α	expression is the	of two
	Rational expressi	ons indicate
and division by	is	This means that we
	a	ny value or values of the
that make a		!

Example 1: Find all numbers for which the rational expression is undefined:

a.
$$\frac{5}{x}$$
 b. $\frac{x+1}{x-4}$

c.
$$\frac{8x-40}{x^2+3x-28}$$
 d. $\frac{x-12}{x^2+4}$

SIMPLIFYING RATIONAL EXPRESSIONS

Α			is		if i	ts
	and			have	commo	on
	_other than	ı or	-			
FUNDAMENTAL I	PRINCIPLE	OF RATIO	NAL EX	PRESSI	ONS	
lf,,	and	are		8	and	and
are						

STEPS FOR SIMPLIFYING RATIONAL EXPRESSIONS

1	_ the	_ and the
completely.		
2	both the	and the
	by any	·

Example 2: Simplify:

a.
$$\frac{4x-64}{16x}$$

b.
$$\frac{6y+18}{11y+33}$$

c.
$$\frac{x^2 - 12x + 36}{4x - 24}$$

d.
$$\frac{x^3 + 4x^2 - 3x - 12}{x + 4}$$

e.
$$\frac{x+5}{x-5}$$

f.
$$\frac{x^3 - 1}{x^2 - 1}$$

SIMPLIFYING RATIONAL EXPRESIONS WITH OPPOSITE FACTORS IN THE NUMERATOR AND DENOMINATOR

The	of two	that have
signs and are		is

Example 3: Simplify:

a. $\frac{x-3}{3-x}$

b.
$$\frac{9x-15}{5-3x}$$

c.
$$\frac{x^2 - 4}{2 - x}$$

APPLICATION

A company that manufactures small canoes has costs given by the equation

$$C = \frac{20x + 20000}{x}$$

in which x is the number of canoes manufactured and C is the cost to manufacture each canoe.

a. Find the cost per canoe when manufacturing 100 canoes.

b. Find the cost per canoe when manufacturing 10000 canoes.

c. Does the cost per canoe increase or decrease as more canoes are manufactured?

Section 7.2: MULTIPLYING AND DIVIDING RATIONAL EXPRESSIONS

When you are done with your homework you should be able to...

- π Multiply rational expressions
- π Divide rational expressions

WARM-UP:

Simplify:

a.
$$\frac{a^2 - 2ab + b^2}{a^2 - b^2}$$
 b. $\frac{x^2 - 3x + 2}{x - 1}$

MULTIPLYING RATIONAL EXPRESSIONS

lf,,	, and	_ are polynomials, where	and
, then			
The	of two	· ·	is
the	of their	, divided by the	
	_of their	·	

STEPS FOR MULTIPLYING RATIONAL EXPRESSIONS

1	all	and	
2		and	by
common			
3	the re	maining factors in the	
and	th	e remaining factors in the	
Example 1: Multiply.			

	x-5	18		9y + 21	y-2
а.	3	$\overline{x-8}$	С.	$y^2 - 2y$	$\overline{3y+7}$

b.
$$\frac{x}{5} \cdot \frac{30}{x-4}$$
 d. $\frac{x^2 + 5x + 6}{x^2 + x - 6} \cdot \frac{x^2 - 9}{x^2 - x - 6}$

DIVIDING RATIONAL EXPRESSIONS

lf,,	, and	are polynomials, where,	
and, then			
The	of two		_ is
the	_of the	expression and the	
of the			

Example 2: Divide.

2	$\frac{x}{\cdot}$	3		y^2-2y .	y-2
d.	3	8	С.	<u> </u>	5

b.
$$\frac{x+5}{7} \div \frac{4x+20}{9}$$

d. $\frac{x^2-4y^2}{x^2+3xy+2y^2} \div \frac{x^2-4xy+4y^2}{x+y}$

Example 3: Perform the indicated operation or operations.

e.
$$\frac{5x^2 - x}{3x + 2} \div \left(\frac{6x^2 + x - 2}{10x^2 + 3x - 1} \cdot \frac{2x^2 - x - 1}{2x^2 - x} \right)$$

f.
$$\frac{5xy - ay - 5xb + ab}{25x^2 - a^2} \div \frac{y^3 - b^3}{15x + 3a}$$

Section 7.4: ADDING AND SUBTRACTING RATIONAL EXPRESSIONS WITH DIFFERENT DENOMINATORS

When you are done with your homework you should be able to...

- π Find the least common denominator
- $\pi~$ Add and subtract rational expressions with different denominators

WARM-UP: Perform the indicated operation and simplify.

1.
$$\frac{-3}{8} + \frac{5}{12}$$
 b. $\frac{x+2}{x^2+x} + \frac{-1}{x^2+x}$

FINDING THE LEAST COMMON DENOMINATOR (LCD)

The		denominator of several		
		is a	consisting	
Of the	of all		in	
the	, with each		raised to the greatest	
	of its occurrence in a	ny denomina	ator.	

FINDING THE LEAST COMMON DENOMINATOR

1	each c	completely.				
2. List the factors of the first						
3. Add to the list in	n step 2 any	of the second denominator				
that do not appear in the list. Repeat this step for all denominators.						
4. Form the step 3. This proc	of the Juct is the LCD.	from the list in				

Example 1: Find the LCD of the rational expressions.

a.
$$\frac{11}{25x^2}$$
 and $\frac{17}{35x}$ b. $\frac{7}{y^2 - 49}$ and $\frac{12}{y^2 - 14y + 49}$

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS THAT HAVE DIFFERENT DENOMINATORS

1. Find the of the	·
2. Rewrite each rational expression as an expression	
whose is the	
 Add or subtract, placing the resulting expression over the LCD. 	
4. If possible, the resulting rational expression.	

Example 2: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{5}{6x} + \frac{7}{8x}$$

b.
$$3 + \frac{1}{x}$$

c.
$$\frac{2}{3x} + \frac{x}{x+3}$$

d.
$$\frac{y}{y-5} - \frac{y-5}{y}$$

e.
$$\frac{3x+7}{x^2-5x+6} - \frac{3}{x-3}$$

f.
$$\frac{5}{x^2 - 36} + \frac{3}{(x+6)^2}$$

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS WHEN DENOMINATORS CONTAIN OPPOSITE FACTORS

When one denominator contains the factor of the other, first						
	_either rational express	ion by	Then apply the			
	_ for	_ or	rational			
expressions that have						

Example 3: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{x+7}{4x+12} + \frac{x}{9-x^2}$$

b.
$$\frac{5x}{x^2 - y^2} - \frac{2}{y - x}$$

c.
$$\frac{7y-2}{y^2-y-12} + \frac{2y}{4-y} + \frac{y+1}{y+3}$$
Section 7.5: COMPLEX RATIONAL EXPRESSIONS

When you are done with your homework you should be able to...

- π Simplify complex rational expressions by dividing
- $\pi~$ Simplify complex rational expressions by multiplying by the LCD

WARM-UP: Perform the indicated operation. Simplify, if possible.

1.
$$\frac{x+1}{x} + \frac{3x}{x+1}$$
 2. $\frac{x^2+x}{x^2-4} \div \frac{12x}{2x-4}$

SIMPLIFYING A COMPLEX RATIONAL EXPRESSION BY DIVIDING

1.	If necessary, add or subtract to get a rational expression in
	the
2.	If necessary, add or subtract to get a rational expression in
	the
3.	Perform the indicated by the main
	bar: the denominator of the complex rational expression
	and
4.	I f possible,

Let's simplify the problem below using this method:

Now let's replace the constants with variables and simplify using the same method. $\frac{1}{x} + \frac{2}{x+1}$

1_	2
4-	x+1

Example 1: Simplify each complex rational expression.

a.
$$\frac{\frac{4}{5} - x}{\frac{4}{5} + x}$$

b.
$$\frac{\frac{1}{x} + \frac{1}{y}}{\frac{1}{x} - \frac{1}{y}}$$

c.
$$\frac{\frac{8}{x^2} - \frac{2}{x}}{\frac{10}{x} - \frac{6}{x^2}}$$

d.
$$\frac{\frac{1}{x-2}}{1-\frac{1}{x-2}}$$

SIMPLIFYING A COMPLEX RATIONAL EXPRESSION BY MULTIPLYING BY THE LCD

1.	Find the LCD of ALL expressions within the
	rational expression.
2.	both the and by
	this LCD.
3.	Use the property and multiply each in the
	numerator and denominator by this
	term. No expressions should remain.
4.	If possible, and

Let's simplify the earlier problem using this method:

 $\frac{\frac{1}{2} + \frac{2}{3}}{4 - \frac{2}{3}}$

Now let's replace the constants with variables and simplify using the same method. $1 \ 2$

 $\frac{\frac{1}{x} + \frac{2}{x+1}}{4 - \frac{2}{x+1}}$

Example 2: Simplify each complex rational expression.

a.
$$\frac{4-\frac{7}{y}}{3-\frac{2}{y}}$$

b.
$$\frac{\frac{3}{x} + \frac{x}{3}}{\frac{x}{3} - \frac{3}{x}}$$

c.
$$\frac{\frac{2}{x^{3}y} + \frac{5}{xy^{4}}}{\frac{5}{x^{3}y} - \frac{3}{xy}}$$

d.
$$\frac{\frac{1}{x-2}}{1-\frac{1}{x-2}}$$

Example 3: Simplify each complex rational expression using the method of your choice.

a.
$$\frac{\frac{3}{x+2} - \frac{3}{x-2}}{\frac{5}{x^2 - 4}}$$

b.
$$\frac{y^{-1} - (y+2)^{-1}}{2}$$

Application:

The average rate on a round-trip commute having a one-way distance d is given by the complex rational expression $\frac{2d}{r_1} + \frac{d}{r_2}$ in which r_1 and r_2 are the average rates

on the outgoing and return trips, respectively.

a. Simplify the expression.

b. Find your average rate if you drive to the campus averaging 40 mph and return home on the same route averaging 30 mph.

Section 7.6: SOLVING RATIONAL EQUATIONS

When you are done with your homework you should be able to...

- π Solve rational equations
- π Solve problems involving formulas with rational expressions
- π Solve a formula with a rational expression for a variable

WARM-UP:

Solve.

 $3x^2 - 2x - 8 = 0$

SOLVING RATIONAL EQUATIONS

1.	ist on the variable. (Remember—no in the enominator!)		
2.	lear the equation of fractions by multiplying sides of the		
	quation by the LCD of rational expressions in the equation.		
3.	the resulting equation.		
4.	4. Reject any proposed solution that is in the list of on the		
	ariable other proposed solutions in the quation.		

Example 1: Solve each rational equation.

a.
$$\frac{7}{2x} = \frac{5}{3x} + \frac{22}{3}$$

b.
$$\frac{10}{y+2} = 3 - \frac{5y}{y+2}$$

c.
$$\frac{x-1}{2x+3} = \frac{6}{x-2}$$

d.
$$\frac{2t}{t^2+2t+1} + \frac{t-1}{t^2+t} = \frac{6t+8}{t^3+2t^2+t}$$

e.
$$3y^{-2} + 1 = 4y^{-1}$$

SOLVING A FORMULA FOR A VARIABLE

Example 2: Solve each formula for the specified variable.

a.
$$\frac{V_1}{V_2} = \frac{P_2}{P_1}$$
 for V_2

b.
$$z = \frac{x - \overline{x}}{s}$$
 for x

c.
$$f = \frac{f_1 f_2}{f_1 + f_2}$$
 for f_2

Section 7.7: APPLICATIONS USING RATIONAL EQUATIONS AND PROPORTIONS

When you are done with your homework you should be able to...

- $\pi~$ Solve problems involving motion
- π Solve problems involving work
- π Solve problems involving proportions
- π Solve problems involving similar triangles

WARM-UP:

A motorboat traveled 36 miles downstream, with the current, in 1.5 hours. The return trip upstream, against the current, covered the same distance, but took 2 hours. Find the boat's rate in still water and the rate of the current.

PROBLEMS I NVOLVI NG MOTI ON

Recall that Rational expressions appear in		
problems when the conditions of the problem involve the traveled.		
When we isolate time in the formula above, we get		

Example 1: As part of an exercise regimen, you walk 2 miles on an indoor track. Then you jog at twice your walking speed for another 2 miles. If the total time spent walking and jogging is 1 hour, find the walking and jogging rates. Example 2: The water's current is 2 mph. A canoe can travel 6 miles downstream, with the current, in the same amount of time that it travels 2 miles upstream, against the current. What is the canoe's average rate in still water?

PROBLEMS I NVOLVI NG WORK

In problems, the number represents one job
Equations in work problems are based on the following
condition:

Example 3: Shannon can clean the house in 4 hours. When she worked with Rory, it

took 3 hours. How long would it take Rory to clean the house if he worked alone?

Example 4: A hurricane strikes and a rural area is without food or water. Three crews arrive. One can dispense needed supplies in 10 hours, a second in 15 hours, and a third in 20 hours. How long will it take all three crews working together to dispense food and water?

PROBLEMS I NVOLVI NG PROPORTI ONS

A <u>ratio</u> is the quotient of two numbers or two quantities. The ratio of two numbers *a* and *b* can be written as

```
a to b or
a:b or
\frac{a}{b}
```

A **proportion** is an equation of the form $\frac{a}{b} = \frac{c}{d}$, where $b \neq 0$ and $d \neq 0$. We call a, b, c, and d the **terms** of the proportion. The cross-products ad and bc are equal.

Example 5: According to the authors of *Number Freaking*, in a global village of 200 people, 9 get drunk every day. How many of the world's 6.9 billion people (2010 population) get drunk every day?

Example 6: A person's hair length is proportional to the number of years it has been growing. After 2 years, a person's hair grows 8 inches. The longest moustache on record was grown by Kalyan Sain of I ndia. Sain grew his moustache for 17 years. How long was each side of the moustache?

SIMILAR FIGURES

Two figures are **<u>similar</u>** if their corresponding angle measures are equal and their corresponding sides are proportional.

Example 7: A fifth-grade student is conducting an experiment to find the height of a tree in the schoolyard. The student measures the length of the tree's shadow and then immediately measures the length of the shadow that a yardstick forms. The tree's shadow measures 30 feet and the yardstick's shadow measures 6 feet. Find the height of the tree.