## DEFINITION OF UNIT TANGENT VECTOR

Let  $\mathcal C$  be a smooth curve represented by  $\mathbf r$  on an open interval  $\mathcal I$ . The  $\underline{\mathbf u}$   $\underline{\mathbf r}$ **vector**  $\mathbf{T}(t)$  at t is defined to be

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}, \ \mathbf{r}'(t) \neq \mathbf{0}$$

The tangent line to a curve at a point is the line passing through point and parallel to the unit tangent vector.

Example 1: Find the unit tangent vector to the curve  $\mathbf{r}(t) = e^t \cos t \mathbf{i} + e^t \mathbf{j}$  when

$$t=0.$$

$$\vec{r}'(t) = \left[e^{t} \cos t - e^{t} \sin t\right] + e^{t} \vec{j} \qquad \overrightarrow{T}'(t) = \underbrace{e^{t} \left[\left(\cos t - \sin t\right) \vec{i} + \vec{j}\right]}_{=e^{t} \left[\left(\cos t - \sin t\right) \vec{i} + \vec{j}\right]} \\
= e^{t} \left[\left(\cos t - \sin t\right) \vec{i} + \vec{j}\right] \qquad \overrightarrow{T}'(0) = \underbrace{T+\vec{j}}_{=e^{t} \left[\left(\cos t - \sin t\right) \vec{i} + \vec{i}\right]}_{=e^{t} \left[\left(\cos t - \sin t\right) \vec{i} + \vec{i}\right]} \\
= e^{t} \left[\left(\cos t - \sin t\right) \vec{i} + \vec{i}\right] \qquad = e^{t} \left[\left(\cos t - \sin t\right) \vec{i} + \vec{i}\right]$$

Example 2: Consider the space curve  $\mathbf{r}(t) = \langle t, t, \sqrt{4-t^2} \rangle$  at the point  $(1,1,\sqrt{3})$ . a.

a. Find the unit tangent vector at the given point.

$$\frac{1}{1} + \frac{1}{1} + \left(-\frac{t}{4}\right)$$

$$\frac{1}{2} + \frac{1}{4} + \left(-\frac{t}{4}\right)$$

$$\frac{1}{2} + \frac{1}{4} + \left(-\frac{t}{4}\right)$$

$$\frac{1}{2} + \frac{1}{4} +$$

curve at the given point.

$$\chi = \alpha t + x_0$$
 $\chi = \alpha t + x_0$ 
 $\chi = t + 1$ 
 $\chi = t + 1$ 

## DEFINITION: PRINCIPAL UNIT NORMAL VECTOR

et  $\mathcal C$  be a smooth curve represented by  $\mathbf r$  on an open interval  $\mathcal I$ . If  $\mathbf T'(t)\neq \mathbf 0$ , then the <u>principal unit normal vector</u>  $\mathbf N(t)$  at t is defined to be

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}$$

At any point on a curve, a unit normal vector is orthogonal to the unit tangent vector. The principal unit normal vector points in the direction in which the curve is turning.

Example 3: Find the principal unit normal vector to the curve  $\mathbf{r}(t) = \ln t \mathbf{i} + (t+1) \mathbf{j}$ 

at the time 
$$t=2$$
.

$$\hat{c}'(t) = \frac{1}{t}\hat{i} + \hat{j}$$

$$||c'(t)|| = ||c|| + 1$$

$$||c'(t)|| = ||c'(t)|| + 1$$

$$||c'(t)||$$

## THEOREM: ACCELERATION VECTOR

If  $\mathbf{r}(t)$  is the position vector for a smooth curve  $\mathcal{C}$  and  $\mathbf{N}(t)$  exists, then the acceleration vector  $\mathbf{a}(t) = a_{\mathbf{r}} \mathbf{T}(t) + a_{\mathbf{N}} \mathbf{N}(t)$  lies in the plane determined by  $\mathbf{T}(t)$  and  $\mathbf{N}(t)$ .

## THEOREM: TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION

If  $\mathbf{r}(t)$  is the position vector for a smooth curve  $\mathcal{C}$  and  $\mathbf{N}(t)$  exists, then the tangential and normal components of acceleration are as follows:

$$a_{\mathbf{T}} = D_t \left[ \|\mathbf{v}\| \right] = \mathbf{a} \cdot \mathbf{T} = \frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|}$$

$$a_{\mathbf{N}} = \|\mathbf{v}\| \|\mathbf{T}'\| = \mathbf{a} \cdot \mathbf{N} = \frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|} = \sqrt{\|\mathbf{a}\|^2 - a_{\mathbf{T}}^2}$$

Note that  $a_{\rm N} \ge 0$ . The normal component of acceleration is also called the centripetal component of acceleration.

Example 4: Find T(t), N(t),  $a_T$ , and  $a_N$  for the plane curve  $\mathbf{r}(t) = e^t \mathbf{i} + e^{-t} \mathbf{j} + t \mathbf{k}$  at the time t = 0.

The time 
$$t = 0$$
.

 $r'(t) = e^{t}, -e^{t}, | -e^{t}, |$ 

$$\frac{\partial}{\partial t} \left( -\left( e^{4t} + e^{2t} + 1 \right)^{-1/2} \right) = + \frac{1}{2} \left( e^{4t} + e^{2t} + 1 \right)^{-\frac{1}{2}} \left( \int_{e^{4t} + 2^{2t} + 1}^{2t} e^{2t} \right)$$

$$= \frac{2e^{4t} + e^{3t}}{\left( e^{4t} + 2^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} + e^{2t} + 1}{\left( e^{4t} + e^{2t} + 1 \right)^{-\frac{1}{2}} \left( e^{4t} + e^{2t} + 1 \right)}$$

$$= \frac{e^{4t} + e^{2t} + 1}{\left( e^{4t} + e^{2t} + 1 \right)^{-\frac{1}{2}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{-\frac{1}{2}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{4t} + 1 \right)^{\frac{1}{2}}}{\left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}} \left( e^{4t} + e^{2t} + 1 \right)^{\frac{1}{2}}}$$

$$= \frac{e^{4t} \left( e^{4t} + e^{4t} + 1 \right)$$

$$\vec{N}(t) = (e^{4c} + e^{2c} + 1)^{3/2}$$

$$(e^{2c} + e^{2c} + 2e^{2c})^{1/2}$$

$$(e^{2c} + e^{2c} + 2e^{2c})^{1/2}$$

$$(e^{2c} + e^{2c} + 1)^{3/2}$$

$$(e^{4c} + e^{2c} + 1)^{3/2}$$

$$(e^{4c} + e^{4c} + 1)^{3/2}$$

$$(e^{4c} + 1)^{3/2}$$

$$(e^$$