When you are done with your homework you should be able to...
π Use Green's Theorem to evaluate a line integral
π Use alternative forms of Green's Theorem

Warm-up:

1. Represent the plane curve $2 x-3 y+5=0$ by a vector-valued function.
2. Determine whether the vector field \mathbf{F} is conservative. If it is, find a potential function for the vector field.

$$
\mathbf{F}(x, y, z)=\frac{x}{x^{2}+y^{2}} \mathbf{i}+\frac{y}{x^{2}+y^{2}} \mathbf{j}+\mathbf{k}
$$

SIMPLE CURVES:
π A curve C given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, a \leq t \leq b$ is simple if it does not cross itself-that is $\mathbf{r}(c) \neq \mathbf{r}(d)$ for all c and d in the open interval (a, b)
π A plane region R is simply connected if its boundary consists of one simple closed curve

GREEN'S THEOREM

Let R be a simply connected region with a piecewise smooth boundary C, oriented counterclockwise (that is, C is traversed once so that the region R always lies to the left). If M and N have continuous partial derivatives in an open region containing R, then

$$
\int_{C} M d x+N d y=\int_{R} \int\left(\frac{d N}{d x}-\frac{d M}{d y}\right) d A
$$

Example 1: Verify Green's Theorem by evaluating both integrals

$$
\int_{C} y^{2} d x+x^{2} d y=\int_{R} \int\left(\frac{d N}{d x}-\frac{d M}{d y}\right) d A \text { for the given path. New way: Green's Ohm } \quad M=y^{2} \quad N=x^{2}
$$

Old way
C : triangle with vertices $(0,0),(4,0),(4,4) \frac{\partial M}{\partial y}=2 y$ and $\frac{\partial N}{\partial x}=2 x$

$$
y(t)=0, \partial y=0
$$

$$
x(t)=4, \partial x=0
$$

$$
y(t)=t-4, d y=d t
$$

$$
\vec{r}(t)=\left\{\begin{array}{ll}
t \hat{\imath}, & 0 \leq t \leq 4 \\
4 \hat{\imath}+(t-1) \hat{\jmath}, 4 \leq t \leq 8 \\
(n-t) \hat{\imath}+(n-t) j, & 8 \leq t \leq 12
\end{array}\right]\left[\begin{array}{l}
y(t)=t-4, \partial y=\partial t \\
x(t)=12-t, \\
y(t)=12-t, \partial y=-\partial t
\end{array}\right]+\quad 8 t
$$

$$
\begin{aligned}
& \vec{r}(t)=\left\{\begin{array}{l}
t \hat{t},(t-1) \hat{\jmath}, 4 \leq t \leq 8- \\
4 i n-t) \hat{\imath}+(12-t), 8 \leq t \leq 12
\end{array}\right] y(t)=12-t, \partial y=-\partial t \quad+2 \int_{8}^{12}-(12-t)^{2} \partial t \\
& \int_{C} y^{2} \partial x+x^{2} \partial y=\int_{0}^{4}(0)^{2} \partial t+t^{2} \cdot 0+\int_{8}^{8}(t-4)^{2} \cdot 0+4^{2} \partial t+\int_{0}^{12}(12-t)^{2}(-\partial t)+\left(12-t^{2}\right)(-\partial t)
\end{aligned}
$$

$$
\begin{aligned}
y & =\int_{0}^{(0)^{2}} 0+\left.11 t\right|_{4}+\left.\frac{2(12-t)^{3}}{3}\right|_{8} ^{12}=64-\frac{128}{3}=\frac{84}{3} \\
& =0
\end{aligned}
$$

Example 2: Use Green's Theorem to evaluate the integral $\int_{C}(y-x) d x+(2 x-y) d y$ for the given path.

$$
\begin{aligned}
& M=y-x \quad N=2 x-y \\
& \frac{\partial M}{\partial y}=1 \quad \frac{\partial N}{\partial x}=2 \\
& \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=2-1=1
\end{aligned}
$$

$$
C: x=2 \cos \theta, y=\sin \theta
$$

$$
\frac{x}{2}=\cos \theta
$$

$$
\text { so } \cos ^{2} \theta+\sin ^{2} \theta=1
$$

$$
\frac{x^{2}}{2^{2}}+\frac{y^{2}}{y^{2}}=1
$$

$$
a=2, b=1
$$

$$
\begin{gathered}
A_{\text {ellipse }}=\pi a b \\
\left(\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1\right. \\
\text { or } \\
\frac{(y-k)^{2}}{a^{2}}+\frac{(x-h)^{2}}{b^{2}}=1
\end{gathered}
$$

$$
A=\pi a b=\pi(2)(1)=2 \pi
$$

$$
\begin{aligned}
\int_{C}(y-x) \partial x+(2 x-y) \partial y & =\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A \\
& =\frac{1}{2 \pi}(2 \pi) \\
& =2 \pi
\end{aligned}
$$

Example 3: Use Green's Theorem to evaluate the line integral.

$$
C=C_{1}+C_{2} \quad \begin{aligned}
& \int_{C}\left(e^{-x^{2} / 2}-y\right) a \\
& C: \text { boundary } \\
& \text { the graphs of } t \\
& \text { and the ellipse }
\end{aligned}
$$

$$
\int_{C}\left(e^{-x^{2} / 2}-y\right) d x+\left(e^{-y^{2} / 2}+x\right) d y
$$

C : boundary of the region lying between the graphs of the circle $x=6 \cos \theta, v=6 \sin \theta$
and the ellipse $\frac{x=3 \cos \theta, y=2 \sin \theta}{-x^{2} / 2}$

Area of R is the area of the circle mini the area of the ellipse

$$
A=\pi \cdot 6^{2}-\pi(3)(2)=30 \pi
$$

$$
\begin{aligned}
& M=e^{-x^{2} / 2}-y \quad N=e^{-y^{2} / 2}+x \\
& \frac{\partial M}{\partial y}=-1 \quad \frac{\partial N}{\partial x}=1 \\
& \frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=1-(-1)=2 \\
& \int_{C}\left(e^{-x^{2} / 2}-y\right) d x+\left(e^{-y^{2} / 2}+x\right) d y \\
& =\iint_{R}(2) \partial A \\
& =30 \pi(2)
\end{aligned}
$$

THEOREM: LINE INTEGRAL FOR AREA
If R is a plane region bounded by a piecewise smooth simple closed curve C, oriented counterclockwise, then the area of R is given by

$$
A=\frac{1}{2} \int_{C} x d y-y d x
$$

Example 4: Use a line integral to find the area of the region R.

$$
y=-\frac{1}{2} x+4
$$

R : triangle bounded by the graphs of $x=0, \frac{3 x-2 y=0}{y=\frac{3}{2} x}, \underline{x+2 y=8}$

$$
\begin{aligned}
& C=C_{1}+C_{2}+C_{3} \\
& \quad C_{1}: y=\frac{3}{2} x, \partial y=\frac{3}{2} \partial x, 0 \leq x \leq 2 \\
& C_{2}: y=-\frac{1}{2} x+4, \partial y=-\frac{1}{2} \partial x, 2 \leq x \leq 0 \\
& C_{3}: x=0, \partial x=0,0 \leq x \leq 0 \\
& \left.-\left(\frac{3}{2} x\right) \partial x+\int_{2}^{0} x\left(-\frac{x}{2} \partial x \partial x\right)-\left(-\frac{x}{2} x x+4\right) \partial x+\int_{0}^{0} 0 \partial y-y \cdot 0\right]
\end{aligned}
$$

$$
A=\frac{1}{2}\left[\int_{0}^{2} 0 d x+\int_{2}^{0}(-4) d x+0\right]
$$

$$
A=\frac{1}{2}\left(-\left.4 x\right|_{2} ^{0}\right)^{2}
$$

$$
A=\frac{1}{2}(-4 \cdot 0-(-4) \cdot 2)
$$

$$
A=\frac{1}{2} \cdot 8
$$

$$
A=4 \text { sq. units }
$$

ALTERNATIVE FORMS OF GREEN'S THEOREM

If \mathbf{F} is a vector field in the plane, you can write $\mathbf{F}(x, y, z)=M \mathbf{i}+N \mathbf{j}+0 \mathbf{k}$. Thus, the
$\operatorname{curl} \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{d}{d x} & \frac{d}{d y} & \frac{d}{d z} \\ M & N & 0\end{array}\right|=-\frac{d N}{d z} \mathbf{i}+\frac{d M}{d z} \mathbf{j}+\left(\frac{d N}{d x}-\frac{d M}{d y}\right) \mathbf{k}$ and $(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k}=\frac{d N}{d x}-\frac{d M}{d y}$. With
appropriate conditions on \mathbf{F}, C and R, you can write Green's Theorem in the vector form

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{R} \int\left(\frac{d N}{d x}-\frac{d M}{d y}\right) d A \\
& =\int_{R} \int(\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} d A
\end{aligned}
$$

(First alternative form)

Assume the same conditions for \mathbf{F}, C and R. Using the arc length parameter s for C, you have $\mathbf{r}(s)=x(s) \mathbf{i}+y(s) \mathbf{j}$. So a unit tangent vector \mathbf{T} to the curve C is given by $\mathbf{r}^{\prime}(s)=x^{\prime}(s) \mathbf{i}+y^{\prime}(s) \mathbf{j}$ and the outward unit normal vector \mathbf{N} can be written as $\mathbf{N}=y^{\prime}(s) \mathbf{i}-x^{\prime}(s) \mathbf{j}$. So for $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$ we have,

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{N} d s & =\int_{a}^{b}(M \mathbf{i}+N \mathbf{j}) \cdot\left(y^{\prime}(s) \mathbf{i}-x^{\prime}(s) \mathbf{j}\right) d s \\
& =\int_{a}^{b}\left(M \frac{d y}{d s}-N \frac{d x}{d s}\right) d s \\
& =\int_{C} M d y-N d x \\
& =\int_{C}-N d x+M d y \\
& =\int_{R} \int\left(\frac{d M}{d x}+\frac{d N}{d y}\right) d A \\
& =\int_{R} \int \operatorname{div} \mathbf{F} d A
\end{aligned}
$$

