$$
\left.\begin{array}{l|l}
\begin{array}{l}
\text { 4/6/11 } \\
\text { - Finish } 14.3 \\
\text { Start } 14.5
\end{array} & \begin{array}{l}
\frac{\text { Friday }}{\text { Finish } 14.5} \\
\text {-Start } 14.6
\end{array}
\end{array} \begin{aligned}
& \frac{\text { Monday }}{\text { Finish } 14.6} \\
& \text { - Qcture } 14.7
\end{aligned} \right\rvert\, \text { Exam to Friday .4/15 }
$$

When you are done with your homework you should be able to...
π Use a double integral to find the area of a surface
Warm-up: Find the area of the parallelogram with vertices

$$
A=(2,-3,1), B=(6,5,-1), C=(3,-6,4) \text { and } D=(7,2,2) . \text { Hint: Section } 11.4
$$

DEFINITION: SURFACE AREA

If f and its first partial derivatives are continuous on the closed region R in the $x y$-plane, then the area of the surface S given by $z=f(x, y)$ over R is given by

Surface Area $=\int_{R} \int d S$

$$
=\int_{R} \int \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
$$

Example 1: Find the area of the surface given by $z=f(x, y)$ over the region R.

$$
f_{x}(x, y)=2
$$

$$
f_{y}(x, y)=-3
$$

$$
\begin{aligned}
& \frac{f(x, y)=15+2 x-3 y}{R: \text { square with vertices }(0,0),(3,0),(0,3),(3,3)} \\
& \text { Surface Area }=\iint \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A \\
&=\int_{0}^{3} \int_{0}^{3} \sqrt{1+(2)^{2}+(3)^{2}} d y d x \\
&=\int_{0}^{3} \int_{0}^{3} \sqrt{14} d y d x \\
&=\left.5 \sqrt{3} \int_{0}^{3} y\right|_{0} ^{3} d x \\
&=3 \sqrt{14} \int_{0}^{3} d x \\
&=3 \sqrt{14} \times\left.\right|_{0} ^{3}
\end{aligned}
$$

Example 2: Find the area of the surface given by $z=f(x, y)$ over the region R.

$$
\begin{aligned}
& f(x, y)=x y \\
& R=\left\{(x, y) \left\lvert\, \frac{x^{2}+y^{2} \leq 16}{4}\right.\right\}
\end{aligned}
$$

$$
\begin{array}{l|l}
f_{x}=y & x^{2}+y^{2}=16 \\
f_{y}=x & y^{2}=16-x^{2} \\
y= \pm \sqrt{16-x^{2}}
\end{array}
$$

$$
\begin{aligned}
\text { Surface Area }= & \int_{-4}^{4} \int_{0}^{1} \sqrt{1+x^{2}+y^{2}} d y d x \\
& \left.=\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{4} r \sqrt{1+r^{2}} d r d \theta=\left.\frac{2 \pi}{3}\left(17^{3 / 2}-1\right) \theta\right|_{0} ^{2 \pi}-1\right) \\
& =\left.\frac{1}{2} \int_{3}^{2 \pi}\left(1+r^{2}\right)^{3 / 2}\right|_{0} ^{4} d \theta \\
& =\frac{1}{3}\left(17^{3 / 2}-1\right) \int_{6}^{2 \pi} d \theta
\end{aligned}
$$

Example 3: Find the area of the surface.
The portion of the cone $z=2 \sqrt{x^{2}+y^{2}}$ inside the cylinder $x^{2}+y^{2}=4$.

Example 4: Set up a double integral that gives the area of the surface on the graph of $f(x, y)=e^{-x} \sin y, R=\{(x, y) \mid 0 \leq x \leq 4,0 \leq y \leq x\}$.

$$
\text { Surface Area }=\int_{0}^{4} \int_{0}^{x} \sqrt{1+e^{-2 x}} d y d x
$$

$$
\begin{aligned}
f_{x}=-e \sin y \mid\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2} & =e^{-2 x}\left(\sin ^{2} y+\cos ^{2} y\right) \\
& =-2 x
\end{aligned}
$$

$$
\left(f_{x}\right)^{2}=e^{-2 x} \sin ^{2} y
$$

$$
=e^{-2 x}
$$

$$
\begin{aligned}
& f_{y}=e^{-x} \cos y \\
& \left(f_{y}\right)^{2}=e^{-2 x} \cos ^{2} y
\end{aligned}
$$

