| 4/29/11
 - Warm-up using
 15.2 wis.
 - Finish 15.1
 - Lecture 15.2$\| \frac{\text { monday }}{15.3}$ |
| :--- | :--- |$\left|\frac{\text { Next Friday }}{15.4}\right|$

When you are done with your homework you should be able to...
π Understand and use the concept of a piecewise smooth curve
π Write and evaluate a line integral
π Write and evaluate a line integral of a vector field
π Write and evaluate a line integral in differential form

Warm-up:

1. Represent the plane curve $2 x-3 y+5=0$ by a vector-valued function.

$$
\begin{gathered}
\vec{r}(t)=x(t) \hat{\imath}+y(t) \hat{\jmath} \\
y=\frac{2}{3} x+\frac{5}{3}
\end{gathered}
$$

let $x=t \rightarrow y=\frac{2}{3} t+\frac{5}{3}$

$$
x(t)=t \quad y(t)=\frac{2}{3} t+\frac{5}{3}
$$

2. Determine whether the vector field \mathbf{F} is conservative. If it is, find a potential function for the vector field.

$$
\begin{aligned}
& \frac{d P}{\partial y}=0 \\
& \frac{\partial N}{\partial z}=0
\end{aligned}>\frac{d P}{\partial y}=\frac{\partial N}{\partial z} /
$$

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=0 \\
& \frac{\partial M}{\partial z}=0
\end{aligned}>\frac{\partial P}{\partial x}=\frac{\partial M}{\partial z}
$$

$$
\begin{aligned}
& \mathbf{F}(x, y, z)=\frac{x}{x^{2}+y^{2}} \mathbf{i}+\frac{y}{x^{2}+y^{2}} \mathbf{j}+\mathbf{k} \\
& \int M \partial x=\frac{1}{2} \int \frac{2 x}{x^{2}+y^{2}} \partial x=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+g(y, z) \\
& \int N \partial y=\frac{1}{2} \int \frac{2 y}{x^{2}+y^{2}}, N=\frac{y}{x^{2}+y^{2}}, P=1 \\
& \int P \partial z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+h(x, z) \\
& \int 1 \partial z=z+K(x, y) \\
& K(x, z)=h(x, z)=z
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial N}{\partial x}=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \frac{\partial M}{\partial y}=-\frac{2 y x}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}>\frac{\partial N}{\partial x}=\frac{\partial \mu}{\partial y}
$$

Potential function:

$$
f(x, y, z)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+z+K
$$

$80 \vec{F}$ is conservative

PIECEWISE SMOOTH CURVES:
π The work done by gravity on an object moving between two points in the field is independent of the path taken by the object

- One constraint is that the path must be a piecewise smooth curve
π Recall that a plane curve Cgiven by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}, \quad a \leq t \leq b$ is smooth if $\frac{d x}{d t}$ and $\frac{d y}{d t}$ are continuous on $[a, b]$ and not simultaneously 0 on (a, b). Similarly, a space curve C given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, \quad a \leq t \leq b$ is smooth if $\frac{d x}{d t}, \frac{d y}{d t}$ and $\frac{d z}{d t}$ are continuous on $[a, b]$ and not simultaneously 0 on (a, b).
π A curve C is piecewise smooth if the interval can be partitioned into a finite number of subintervals, on each of which C is smooth.

Example 1: Find a piecewise smooth parametrization of the path C.

$$
\begin{aligned}
& \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \\
& \sin ^{2} t+\cos ^{2} t=1 \\
& \frac{x^{2}}{16}+\frac{y^{2}}{9}=1 \\
& \frac{x^{2}}{16}=\sin ^{2} t \quad \frac{y^{2}}{9}=\cos ^{2} t \\
& x=4 \sin t \quad y=3 \cos t \\
& \begin{array}{cc}
\uparrow & \uparrow \\
x(t) & y(t)
\end{array} \\
& \frac{\partial x}{\partial t}=4 \cos t, \frac{\frac{\partial n}{}[0,2 \pi]}{\partial t}=0 \text { when } t=\frac{\pi}{2}, \frac{3 \pi}{2} \\
& \frac{\partial y}{\partial t}=-3 \sin t, \frac{\partial y}{\partial t}=0 \text { when } t=0, \pi \\
& \text { So } \frac{\partial x}{\partial t} \text { and } \frac{\partial y}{\partial t} \text { are continuous on }[0,2 \pi) \\
& \text { and they are not simul taneously zero on } \\
& (0,2 \pi) \text {. } \\
& \text { So } \vec{r}(t)=4 \sin t \hat{\imath}+3 \cos t \hat{\jmath}, 0 \leq t \leq 2 \pi \\
& \text { is a smooth parametrization of the } \\
& \text { path C. }
\end{aligned}
$$

DEFINITION OF LINE INTEGRAL

If f is defined in a region containing a smooth curve C of finite length, then the line integral of f along C is given by

$$
\begin{aligned}
& \int_{C} f(x, y) d s=\lim _{\| \Delta \mid \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta s_{i} \quad \text { plane } \\
& \text { or } \\
& \int_{C} f(x, y, z) d s=\lim _{\| \Delta \mid \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}, z_{i}\right) \Delta s_{i} \quad \text { space }
\end{aligned}
$$

provided this limit exists.
*To evaluate a line integral over a plane curve C given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, use the fact that $d s=\left\|\mathbf{r}^{\prime}(t)\right\| d t=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t$.

THEOREM: EVALUATION OF A LINE INTEGRAL AS A DEFINITE INTEGRAL

Let f be continuous in a region containing a smooth curve C.
If C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, where $a \leq t \leq b$, then

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

If C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$, where $a \leq t \leq b$, then

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

Note that if $f(x, y, z)=1$, the line integral gives the arc length of the curve C.
That is, $\int_{C} 1 d s=\int_{a}^{b}\left\|r^{\prime}(t)\right\| d t=$ length of curve C.

Example 2: Evaluate the line integral along the given path.

$$
\text { (1) } f(x, y, z)=8 x y z
$$

$$
\begin{aligned}
x(t)=12 t, x^{\prime}(t)=12 & =f(12 t, 5 t, 3) \\
y(t)=5 t, y^{\prime}(t)=5 & =8(12 t)(5 t)(3) \\
& =1440 t^{2} \\
z(t)=3, z^{\prime}(t)=0 & \text { (3) } \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} \\
& =\sqrt{\left.(12)^{2}+(5)^{2}+0\right)^{2}}=13
\end{aligned}
$$

DEFINITION OF LINE INTEGRAL OF A VECTOR FIELD
Let \mathbf{F} be a continuous vector field defined on a smooth curve Cgiven by $\mathbf{r}(t)$, $a \leq t \leq b$. The line integral of F on C is given by

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Example 3: Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is represented by $\mathbf{r}(t) \int_{c} \overrightarrow{\boldsymbol{F}} \cdot d \vec{r}=\int_{0}^{\pi}\left(8 \sin ^{2} t \cos t \cdot 8 \cos ^{2} t \sin t+\frac{t^{5}}{4}\right) \hat{e}$

$$
\begin{aligned}
& x(t)=2 \sin t, x^{\prime}(t)=2 \cos t \\
& \mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k} \\
& \left.=\frac{8}{3} \sin ^{3} t+\frac{8}{3} \cos ^{3} t+\frac{t^{6}}{24}\right)_{0}^{\pi} \\
& y(t)=2 \cos t, y^{\prime}(t)=-2 \sin t \\
& C: \mathbf{r}(t)=2 \sin t \mathbf{i}+2 \cos t \mathbf{j}+\frac{1}{2} t^{2} \mathbf{k} \\
& =\left[\left(0-\frac{8}{3}+\frac{\pi^{6}}{24}\right)-\left(0+\frac{8}{3}+0\right)\right]^{0} \\
& z(t)=\frac{1}{2} t^{2}, z^{\prime}(t)=t \\
& \text { (2) } \vec{r}^{\prime}(t)=2 \cos t \hat{\imath}-2 \sin t \hat{\jmath}+t \hat{k} \\
& \vec{F}(x(t), y(t), z(t)) \\
& =\vec{F}\left(2 \sin t, 2 \cos t, \frac{1}{2} t^{2}\right) \\
& \text { So } \vec{F} \cdot \vec{r}^{\prime}(t)=\left(4 \sin ^{2} t\right)(2 \cos t)+\left(4 \cos ^{2} t\right)(-2 \sin t) \\
& =(2 \sin t)^{2} \hat{\imath}+(2 \cos t)^{2} \hat{\jmath}+\left(\frac{1}{2} t^{2}\right)^{2} \hat{k} \\
& +\left(\frac{1}{4} t^{4}\right)(t) \\
& =4 \sin ^{2} t \hat{\imath}+4 \cos ^{2} t \hat{\jmath}+\frac{1}{4} t^{4} \hat{k} \\
& =8 \sin ^{2} t \cos t-8 \cos ^{2} t \sin t+\frac{t^{5}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{C} 8 x y z d s=\int_{0}^{2} 1440 t^{2}(13) d t=\left.\frac{13-1480}{3} t^{3}\right|_{0} ^{2} \\
& C: \mathbf{r}(t)=12 t \mathbf{i}+5 t \mathbf{j}+3 \mathbf{k} \text {. } \\
& 0 \leq t \leq 2 \\
& =6240(8-0) \\
& \text { (2) } f(x(t), y(t), z(t)) \\
& =49920 \\
& =1440 t^{2} \\
& \text { (3) } \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} \\
& =\sqrt{\left.(12)^{2}+(5)^{2}+6\right)^{2}}=13
\end{aligned}
$$

LINE INTEGRALS IN DIFFERENTIAL FORM
If \mathbf{F} is a vector field of the form $\mathbf{F}(x, y)=M \mathbf{i}+N \mathbf{j}$, and C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, then $\mathbf{F} \cdot d \mathbf{r}$ is often written as $M d x+N d y$.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{C} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t \\
& =\int_{a}^{b}(M \mathbf{i}+N \mathbf{j}) \cdot\left(x^{\prime}(t) \mathbf{i}+y^{\prime}(t) \mathbf{j}\right) d t \\
& =\int_{a}^{b}\left(M \frac{d x}{d t}+N \frac{d y}{d t}\right) d t \\
& =\int_{C}(M d x+n d y)
\end{aligned}
$$

*The parenthesis are often omitted.
Example 4: Evaluate the integral $\int_{C}(2 x-y) d x+(x+3 y) d y$ along the path C $C:$ arc on $y=x^{3 / 2}$ from $(0,0)$ to $(4,8)$

$$
\begin{aligned}
& \int_{0}^{4}\left[2 t-t^{3 / 2}\right] d t+\left(t+3 t^{3 / 2}\right)\left(\frac{3}{2} t^{1 / 2} d t\right) \\
= & \int_{0}^{4}\left(2 t-t^{3 / 2}+\frac{3}{2} t^{3 / 2}+\frac{9}{2} t^{2}\right) d t \\
= & \int_{0}^{4}\left(2 t+\frac{1}{2} t^{3 / 2}+\frac{9}{2} t^{2}\right) d t \\
= & \left(t^{2}+\frac{1}{4} \cdot \frac{1}{5} t^{5 / 2}+\left.\frac{3}{2} t^{3}\right|_{0} ^{4}\right. \\
= & \left(16+\frac{1}{5}(32)+\frac{3}{2}\left(6^{42}\right)\right)-(0)=\frac{592}{5}
\end{aligned}
$$

$$
2 x-y=2 t-t^{3 / 2}
$$

$$
x+3 y=t+3 t^{3 / 2}
$$

