

When you are done with your homework you should be able to...
π Find and use directional derivatives of a function of two variables
π Find the gradient of a function of two variables
π Use the gradient of a function of two variables in applications
π Find directional derivatives and gradients of functions of three variables
Warm-up: Normalize the following vector (aka find the unit vector):

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{\mathbf{v i}-\mathbf{j}}{\sqrt{37}}(6 \hat{i}-\hat{\jmath})
$$

$$
\|\vec{v}\|=\sqrt{6^{2}+(-1)^{2}}
$$

$$
\|v\|=\sqrt{37}
$$

Recall that the slope of a surface in the x-direction is given by $f_{x}(x, y)$
And the slope of a surface in the y-direction is given by \qquad $f_{y}(x, y)$ In this section, we will find that these two \qquad partial derivatives can be used to find the slope in any direction.

DEFINITION: DIRECTIONAL DERIVATIVE
Let f be a function of two variables x and y and let $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$ be a unit vector. Then the directional derivative of f in the direction of u, denoted by $D_{\mathbf{u}} f$, is

$$
D_{\mathbf{u}} f(x, y)=\lim _{t \rightarrow 0} \frac{f(x+t \cos \theta, y+t \sin \theta)-f(x, y)}{t}
$$

provided the limit exists.
Let $z=f(x, y)$ be a surface and $P\left(x_{0}, y_{0}\right)$ is a point in the domain of f. The "direction" of the directional derivative is $\vec{u}=\cos \theta \hat{\imath}+\sin \theta \hat{\jmath}$, θ is the angle made with the positive x-axis.

THEOREM: DIRECTIONAL DERIVATIVE
If f is a differentiable function of x and y, then the directional derivative of f in the direction of the unit vector $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$ is

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta
$$

There are infinitely many directional derivatives to a surface at a given point-one for each direction specified by \mathbf{u}.

Example 1: Find the directional derivative of the following functions at the given point and direction.
a. $\quad f(x, y)=x^{3}-y^{3}$, at the point $P(4,3)$, in the direction $\mathbf{v}=\frac{\sqrt{2}}{2}(\mathbf{i}+\mathbf{j})$

$$
\begin{aligned}
D_{\vec{v}} f(x, y) & =f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta \\
D_{\vec{v}} f(x, y) & =3 x^{2}\left(\frac{\sqrt{2}}{2}\right)-3 y^{2}\left(\frac{\sqrt{2}}{2}\right) \\
D_{\vec{v}} f(4,3) & =3(4)^{2}\left(\frac{\sqrt{2}}{2}\right)-3(3)^{2}\left(\frac{\sqrt{2}}{2}\right) \\
& =24 \sqrt{2}-\frac{27 \sqrt{2}}{2}
\end{aligned}
$$

$$
\vec{u}=\cos \theta \hat{\imath}+\sin \theta \hat{\jmath}
$$

$$
\vec{v}=\frac{\sqrt{2}}{2} \hat{\imath}+\frac{\sqrt{2}}{2} \hat{\jmath}
$$

already a unit vector, so

$$
\cos \theta=\frac{\sqrt{2}}{2} \text { and } \sin \theta=\frac{\sqrt{2}}{2}
$$

b. $\quad f(x, y)=\cos (x+y)$, at the point $P(0, \pi)$, in the direction $Q\left(\frac{\pi}{2}, 0\right)$

$$
\begin{array}{rlr}
D_{\vec{u}} f(x, y) & =f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta \\
D_{\vec{u}} f(x, y) & =-\sin (x+y)\left(\frac{1}{\sqrt{5}}\right)-\sin (x+y)\left(-\frac{2}{\sqrt{5}}\right) \left\lvert\, \begin{aligned}
\overrightarrow{P Q} & =\left\langle\frac{\pi}{2}-0,0-\pi\right\rangle \\
& =\left\langle\frac{\pi}{2},-\pi\right\rangle \\
D_{\vec{u}} f(0, \pi) & =\frac{-\sin (0+\pi)}{\sqrt{5}}+\frac{2 \sin (0+\pi)}{\sqrt{5}} \quad\|\overrightarrow{P Q}\|
\end{aligned}=\sqrt{\left(\frac{\pi}{2}\right)^{2}+(-\pi)^{2}}\right. \\
& =\sqrt{\frac{\pi^{2}}{4}+\pi^{2}} \\
& =0 \quad \text { so } \vec{u}=\frac{\left\langle\frac{\pi}{2}-\pi\right\rangle}{\frac{\pi \sqrt{5}}{2}} \\
& =\sqrt{\frac{5 \pi^{2}}{4}} \quad \begin{array}{l}
\frac{\pi \sqrt{5}}{2} \quad \vec{u}
\end{array} \quad \frac{\langle 1,-2\rangle}{\sqrt{5}}
\end{array}
$$

DEFINITION: GRADIENT OF A FUNCTION OF TWO VARIABLES
Let $z=f(x, y)$, be a function of x and y such that f_{x} and f_{y} exist. Then the gradient of f, denoted by $\nabla f(x, y)$, is the vector

$$
\nabla f(x, y)=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}
$$

∇f is read as "del f ". Another notation for the gradient is $\operatorname{grad} f(x, y)$.
Example 2: Find the gradient of $f(x, y)=\ln \left(x^{2}-y\right)$, at the point $(2,3)$.

$$
\begin{aligned}
\nabla f(x, y) & =f_{x}(x, y) \hat{\imath}+f_{y}(x, y) \hat{\jmath} \\
\nabla f(x, y) & =\frac{2 x}{x^{2}-y} \hat{\imath}+\frac{-1}{x^{2}-y} \hat{\jmath} \\
\nabla f(2,3) & =\frac{2(2)}{(2)^{2}-3} \hat{\imath}-\frac{1}{(2)^{2}-3} \hat{\jmath} \\
& =4 \hat{\imath}-\hat{\jmath}
\end{aligned}
$$

THEOREM: ALTERNATIVE FORM OF THE DIRECTIONAL DERIVATIVE
If f is a differentiable function of x and y, then the directional derivative of f in the direction of the unit vector \mathbf{u} is

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u}
$$

Example 3: Use the gradient to find the directional derivative of the function $f(x, y)=\sin 2 x \cos y$ at the point $P(0,0)$ in the direction of $Q\left(\frac{\pi}{2}, \pi\right)$.

$$
\begin{aligned}
& \begin{array}{l}
D_{\vec{u}} f(0,0)=\nabla f(0,0) \cdot \vec{u} \\
=\langle 2,0\rangle \cdot\left\langle\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right\rangle
\end{array} \\
& =(2)\left(\frac{1}{\sqrt{5}}\right)+(0)\left(\frac{2}{\sqrt{5}}\right) \\
& =\frac{2}{\sqrt{5}} \\
& \nabla f(x, y)=f_{x}(x, y)^{\hat{1}}+f_{y}(x, y) \hat{j} \\
& \nabla f(x, y)=2 \cos 2 x \cos y \hat{\imath} \\
& -\sin 2 x \sin y \hat{\jmath} \\
& \nabla f(0,0)=2(1)(1) \hat{\imath}+0 \hat{\jmath} \\
& =2 \hat{\imath} \\
& \vec{u}=\frac{\left\langle\frac{\pi}{2}, \pi\right\rangle}{\left\|\left\langle\frac{\pi}{2}, \pi\right\rangle\right\|} \\
& \begin{array}{l}
=\frac{\left\langle\frac{\pi}{2}, \pi\right\rangle}{\pi \sqrt{5}} \\
=\frac{1}{\sqrt{5}}\left(\hat{\imath}^{2}+2 \hat{\jmath}\right)
\end{array}
\end{aligned}
$$

THEOREM: PROPERTIES OF THE GRADIENT
Let f be differentiable at the point (x, y).

1. If $\nabla f(x, y)=\mathbf{0}$, then $D_{\mathbf{u}} f(x, y)=0$ for all \mathbf{u}
2. The direction of maximum increase of f is given by $\nabla f(x, y)$. The maximum value of $D_{\mathrm{u}} f(x, y)$ is $\|\nabla f(x, y)\|$.
3. The direction of minimum increase of f is given by $-\nabla f(x, y)$. The minimum value of $D_{\mathbf{u}} f(x, y)$ is $-\|\nabla f(x, y)\|$.

Example 4: The surface of a mountain is modeled by the equation $h(x, y)=5000-0.001 x^{2}-0.004 y^{2}$. A mountain climber is at the point $(500,300,4390)$. In what direction should the climber move in order to ascend at the greatest rate?

$$
\begin{aligned}
& \nabla h(x, y)=h_{x}(x, y) \hat{i}+h_{y}(x, y) \hat{j} \\
& \nabla h(x, y)=-.002 x \hat{i}-.008 y \hat{j} \\
& \|\nabla h(x, y)\|
\end{aligned}=\sqrt{.000004 x^{2}+.000064 y^{2}}, ~ \begin{aligned}
\|\nabla h(500,300)\| & =2.6 \rightarrow \max \text { value of the gradient } \\
\nabla h(500,300) & =-.002(500) \hat{i}-.008(300) \hat{j} \\
& =-\hat{i}-2.4 \hat{\jmath}
\end{aligned}
$$

The climber should move in the direction $\hat{-1}-2.4 \hat{\jmath}$ to ascend at THEOREM: GRADIENT IS NORMAL TO LEVEL CURVES the greatest rate
If f is differentiable at $\left(x_{0}, y_{0}\right)$ and $\nabla f(x, y) \neq \mathbf{0}$, then $\nabla f\left(x_{0}, y_{0}\right)$ is normal to the level curve through $\left(x_{0}, y_{0}\right)$.

THEOREM: PROPERTIES OF THE GRADIENT
Let f be a function of ${ }^{x, y}$, with continuous first partial derivatives. The directional derivative of \boldsymbol{f} in the direction of a unit vector $\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is given by

$$
D_{u} f(x, y, z)=a f_{x}(x, y, z)+b f_{y}(x, y, z)+c f_{z}(x, y, z)
$$

The gradient of f is defined to be

$$
\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}
$$

1. $D_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \mathbf{u}$
2. If $\nabla f(x, y, z)=\mathbf{0}$, then $D_{\mathbf{u}} f(x, y, z)=0$ for all \mathbf{u}
3. The direction of maximum increase of f is given by $\nabla f(x, y, z)$. The maximum value of $D_{\mathrm{u}} f(x, y, z)$ is $\|\nabla f(x, y, z)\|$.
4. The direction of minimum increase of f is given by $-\nabla f(x, y, z)$. The minimum value of $D_{\mathrm{u}} f(x, y, z)$ is $-\|\nabla f(x, y, z)\|$.

Example 5: Find the gradient of the function $w=x y^{2} z^{2}$ and the maximum value of the directional derivative at the point $(2,1,1)$.

$$
\begin{aligned}
\text { let } \omega & =f(x, y, z) \\
\nabla f(x, y, z) & =f_{x}(x, y, z) \hat{\imath}+f_{y}(x, y, z) \hat{\jmath}+f_{z}(x, y, z) \hat{k} \\
\nabla f(x, y, z) & =y^{2} z^{2} \hat{\imath}+2 x y z^{2} \hat{\jmath}+2 x y^{2} z \hat{k} \\
\nabla f(2,1,1) & =(1)^{2}(1)^{2} \hat{\imath}+2(2)(1)(1)^{2} \hat{\jmath}+2(2)(1)^{2}(1) k \\
& =\hat{\imath}+4 \hat{\jmath}+4 \hat{k}
\end{aligned}
$$

max value of the directional derivative at the point $(2,1,1)$ is $\|\nabla f(2,1,1)\|=\sqrt{(1)^{2}+(4)^{2}+(4)^{2}}=\sqrt{33}$

