

When you are done with your homework you should be able to...
π Understand the concepts of increments and differentials
π Extend the concept of differentiability to a function of two variables
π Use a differential as an approximation
Warm-up: The measurement of a side of a square is found to be 12 inches, with a possible error of $\frac{1}{64}$ inch. Use differentials to approximate the possible propagated error in computing the area of the square.

$$
\frac{\partial A=\frac{\partial x^{2}}{\partial x}}{\partial x} \quad \begin{aligned}
& \partial A=2(x)\left(\pm \frac{1}{6 a}\right) \\
& \partial A= \pm \frac{3}{8} \text { in }^{2}
\end{aligned}
$$

$$
\frac{\partial A}{\partial L}=2 x
$$

The possible propagated error in

$$
\partial A=2 x \partial x
$$ computing the area of the square

is $\pm \frac{3}{8}$ in is $\pm \frac{3}{8}$ in.

DEFINITION OF TOTAL DIFFERENTIAL
If $z=f(x, y)$ and Δx and Δy are increments of x and y, then the differentials of the independent variables x and y are

$$
d x=\Delta x \quad \text { and } \quad d y=\Delta y
$$

and the total differential of the dependent variable z is

$$
\partial z=\frac{\partial z}{\partial x} d x+\frac{\widehat{\sigma} z}{\partial y} d y=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

Example 1: Find the total differential.
a. $z=\frac{x^{2}}{y}$

$$
\begin{aligned}
& \partial z=f_{x}(x, y) \partial x+f_{y}(x, y) \partial y \\
& \partial z=\frac{2 x}{y} \partial x-\frac{x^{2}}{y^{2}} \partial y
\end{aligned}
$$

b. $\quad w=e^{y} \cos x+z^{2}$

$$
\begin{aligned}
& \partial \omega=f_{x}(x, y, z) \partial x+f_{y}(x, y, z) \partial y+f_{z}(x, y, z) \partial z \\
& \partial \omega=-e^{y} \sin x \partial x+e^{y} \cos x \partial y+2 z \partial z
\end{aligned}
$$

DEFINITION OF DIFFERENTIABILITY
A function f given by $z=f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if Δz can be written in the form

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where both ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$. The function f is differentiable in a region R if it is differentiable at each point in R.

Example 2: Find $z=f(x, y)$ and use the total differential to approximate the quantity.

$$
\begin{aligned}
& (2.03)^{2}(1+8.9)^{3}-2^{2}(1+9)^{3} \\
& z=x^{2}(1+y)^{3} \\
& x=2 \\
& \partial x=.03 \\
& y=9 \\
& \partial y=-.1
\end{aligned}
$$

$$
\begin{aligned}
& \partial z=\frac{\partial z}{\partial x} \partial x+\frac{\partial z}{\partial y} \partial y \\
& \partial z=2 x(1+y)^{3} \partial x+x^{2}\left[3(1+y)^{2}\right] \partial y \\
& \partial z=2(2)(1+9)^{3}(.03)+(2)^{3}(1+9)^{2}(-1) \\
& \partial z=4(30)-12(10) \\
& \partial z=120-n 0 \\
& \partial z=0
\end{aligned}
$$

THEOREM: SUFFICIENT CONDITION FOR DIFFERENTIABILITY
If f is a function of x and y, where f_{x} and f_{y} are continuous in an open region R, then f is differentiable on R.

THEOREM: DIFFERENTIABILITY IMPLIES CONTINUITY
If a function of x and y is differentiable at $\left(x_{0}, y_{0}\right)$ then it is continuous at $\left(x_{0}, y_{0}\right)$.

Example 3: A triangle is measured and two adjacent sides are found to be 3 inches and 4 inches long, with an included angle of $\frac{\pi}{4}$. The possible errors in measurement are $\frac{1}{16}$ inch for the sides and 0.02 radian for the angle.
Approximate the maximum possible error in the computation of the area.

$$
\begin{aligned}
A r e a & =\frac{1}{2} a \cdot b \cdot \sin C \\
A & =\frac{1}{2} a b \sin C \\
\partial A & =\frac{\partial A}{\partial a} \partial a+\frac{\partial A}{\partial b} \partial b+\frac{\partial A}{\partial C} \partial C \\
\partial A & =\frac{1}{2}[b \sin C \partial a+a \sin C \partial b+a b \cos C \partial C] \\
\partial A & =\frac{1}{2}\left[4(\sin \pi / 4)\left(\frac{1}{16}\right)+3\left(\sin \frac{\pi}{4}\right)\left(\frac{1}{16}\right)+3 \cdot 4\left(\cos \frac{\pi}{4}\right)(E .02)\right]
\end{aligned}
$$

continuous
Example 4: Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable by finding values for ε_{1} and ε_{2} as designated in the definition of differentiability, and verify that both ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

DEFINITION OF DIFFERENTIABILITY
A function f given by $z=f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$ if Δz can be written in the form

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

where both ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$. The function f is differentiable in a region R if it is differentiable at each point in R.
$\Delta z=\left[f_{x}\left(x_{0}, y_{0}\right)+\varepsilon_{1}\right] \Delta x+\left[f_{y}\left(x_{0}, y_{0}\right)+\varepsilon_{2}\right] \Delta y$ where ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)
$$

Let $x=x_{0}+\Delta x$ and $y=y_{0}+\Delta y$

$$
\begin{aligned}
& f(x, y)-f\left(x_{0}, y_{0}\right)=\left[f_{x}\left(x_{0}, y_{0}\right)+\varepsilon_{1}\right] \Delta x+\left[f_{y}\left(x_{0}, y_{0}\right)+\varepsilon_{0}\right]^{\Delta y} \\
&=\left[f_{x}\left(x_{0}, y_{0}\right)+\varepsilon_{1}\right]\left(x-x_{0}\right)+\left[f_{y}\left(x_{0}, y_{0}\right)+\varepsilon_{2}\right]\left(y-y_{0}\right) \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=\left[f_{x}\left(x_{0}, y_{0}\right)+\varepsilon_{1}\right]\left(x-x_{0}\right)+\left[f_{y}\left(x_{0}, y_{0}\right)+\varepsilon_{2}\right]\left(y-y_{0}\right) \\
&+f\left(x_{0}, y_{0}\right) \\
&=0+f\left(x_{0}, y_{0}\right) \\
&=f\left(x_{0}, y_{0}\right)
\end{aligned}
$$

so f is continuous at $\left(x_{0}, y_{0}\right)$.

Example 4: Show that the function $f(x, y)=x^{2}+y^{2}$ is differentiable by finding values for ε_{1} and ε_{2} as designated in the definition of differentiability, and verify that both ε_{1} and $\varepsilon_{2} \rightarrow 0$ as $(\Delta x, \Delta y) \rightarrow(0,0)$.

Let $z=f(x, y)$

$$
\begin{aligned}
\Delta z & =f(x+\Delta x, y+\Delta y)-f(x, y) \\
& =\left[(x+\Delta x)^{2}+(y+\Delta y)^{2}\right]-\left(x^{2}+y^{2}\right) \\
& =x^{2}+2 x \Delta x+(\Delta x)^{2}+y^{2}+2 y \Delta y+(\Delta y)^{2}-x^{y}-y^{2} \\
& =2 x(\Delta x)+2 y(\Delta y)+\Delta x(\Delta x)+\Delta y(\Delta y) \\
& =f_{x}(x, y)(\Delta x)+f_{y}(x, y)(\Delta y)+\varepsilon_{1}(\Delta x)+\varepsilon_{2}(\Delta y)
\end{aligned}
$$

$\varepsilon_{1}=\Delta x, \varepsilon_{2}=\Delta y$ as $(\Delta x, \Delta y) \rightarrow(0,0), \varepsilon_{1} \rightarrow 0$ and $\varepsilon_{2} \rightarrow 0$

