$3 / M / 11$

- Warm up

$$
\text { - lecture } 13.8
$$

3.8
(12) Examine the function for relative extrema

$$
\begin{array}{ll}
f(x, y)=-5 x^{2}+4 x y-y^{2}+16 x+10 & \\
f_{x}(x, y)=-10 x+4 y+16 & \text { critical point } \\
f_{y}(x, y)=4 x-2 y & \\
\begin{array}{ll}
f_{x x}(x, y)=-10 x+4 y+16= \\
\text { so } f_{x x}(8,16)=-10 & \\
f_{y y}(x, y)=-2 & \text { critical point } \\
f_{y y}(8,16)=-2 & \text { is }(8,16) \\
f_{x y}(x, y)=4 & d=(-10)(-2)-(4)^{2} \\
f_{x y}(8,16)=4 & d=20-16
\end{array}
\end{array}
$$

$$
\begin{gathered}
\text { critical point } \\
-10 x+4 y+16=0 \\
4 x-2 y=0
\end{gathered} \quad \begin{aligned}
& -5 x+2 y=-8 \\
& 4 x-2 y=0 \\
& -x=-8
\end{aligned}
$$

$$
\begin{aligned}
x & =8 \\
4 x-2 y & =0 \\
4(8)-2 y & =0 \\
-2 y & =-32 \\
y & =16
\end{aligned}
$$

So there is a relative maximum at

$$
\begin{aligned}
(8,16,74) \square & \begin{aligned}
f(8,16) & =-5(8)^{2}+4(8)(16) \\
& -(16)^{2}+16(8)+10 \\
& =74
\end{aligned}
\end{aligned}
$$

(48) $f(x, y)=(2 x-y)^{2}$
R : The triangular region in the $x y$-plane with vertices $(2,0),(0,1)$ and $(1,2)$

$$
f_{x}(x, y)=2(2 x-y)^{\prime} \cdot 2=4(2 x-y)
$$

$$
f_{y}(x, y)=2(2 x-y)^{\prime} \cdot(-1)=-2(2 x-y) f^{\prime}(-2
$$

On the line y_{1} :

$$
\begin{gathered}
2 x-(-2 x+4)=0 \\
2 x+2 x-4=0 \\
4 x=4 \\
x=1, y=2
\end{gathered}
$$

crit. point: $(1,2)$
on the line y_{2} :

$$
\begin{aligned}
2 x-(x+1) & =0 \\
x-1 & =0 \\
x & =1 \\
y_{2} & =2
\end{aligned}
$$

crit, point: $(1,2)$
on the line y_{3} :

$$
\begin{gathered}
2 x-\left(-\frac{1}{2} x+1\right)=0 \\
2 x+\frac{1}{2} x-1=0 \\
\frac{5}{2} x=1 \\
x=\frac{2}{5} \\
y=-\frac{1}{2}\left(\frac{x}{5}\right)^{2}+1=\frac{4}{5}
\end{gathered}
$$

$$
\begin{aligned}
& 1 \leq x \leq 2 \\
& 0 \leq y \leq 2
\end{aligned}
$$

$$
\begin{aligned}
& f_{x x}(x, y)=8 \\
& f_{y y}(x, y)=2 \\
& f_{x y}(x, y)=-4
\end{aligned}
$$

$$
d=(8)(2)-(-4)^{2}
$$

$$
d=0
$$

$d=0 \quad$ so we to
examine the

$$
\begin{aligned}
& z=(2 x-y)^{2} \\
& 0=2 x-y \\
& y=2 x
\end{aligned}
$$

$$
\text { pelt }\left\{\begin{array}{l}
f(2,0)=[2(2)-0]^{2}=16 \\
f(1,2)=0 \text { (already found) } \\
f(0,1)=[2(0)-1]^{2}=1
\end{array}\right.
$$

Absolute max is at $(2,0,16)$ and absolute min is O at $(1,2,0)$ and along the line $y=2 x$

When you are done with your homework you should be able to...
π Find the absolute and relative extrema of a function of two variables
π Use the Second Partials Test to find relative extrema of a function of two variables

$$
f(x)=\frac{\sin 2 x}{2}
$$

Warm-up: Consider the function $f(x)=\sin x \cos x$ on the interval $(0, \pi)$.
A. Find the critical numbers.

$$
\begin{array}{ll}
f^{\prime}(x)=\frac{1}{2}[2 \cos 2 x] & 0<x<\pi \\
0 & =\cos 2 x \\
2 x & =\frac{\pi}{2}, \frac{3 \pi}{2}
\end{array} \begin{array}{ll}
\text { ind the critical numbers. } \\
\text { critical } \#, \frac{3 \pi}{4} & 0<2 x<2 \pi
\end{array}
$$

B. Apply the theorem which tests for increasing and decreasing intervals.

$$
\begin{array}{ll:l}
f^{\prime}(x)=\cos 2 x & \left(0, \frac{\pi}{4}\right),\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right) & \left(\frac{3 \pi}{4}, \pi\right) \\
f^{\prime}\left(\frac{\pi}{6}\right)=\frac{1}{2}>0 & +:, & f: \\
f^{\prime}\left(\frac{\pi}{2}\right)=-1<0 & ,: & , \\
f^{\prime}\left(\frac{5 \pi}{2}\right)=\frac{1}{2}>0 & 0 \pi & \pi
\end{array}
$$

C. Find the open intervals) on which the function is $\quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{2} \quad \frac{3 \pi}{4} \quad \frac{5 \pi}{6} \pi$
a. Increasing
b. Decreasing

$$
\begin{aligned}
& \text { sis increasing } \\
& \text { on }\left(0, \frac{\pi}{4}\right) \cup\left(\frac{3 \pi}{4}, \pi\right) \\
& \text { f is decreasing on }\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right) \\
& \text { fins in }
\end{aligned}
$$

D. Apply the First Derivative test to identify all relative extrema. Give your results) as an ordered pair.

$$
\operatorname{At}\left(\frac{\pi}{4}, f\left(\frac{\pi}{4}\right)\right)=\left(\frac{\pi}{4}, \frac{1}{2}\right)
$$

there is a relative maximum and at $\left(\frac{3 \pi}{4},-\frac{1}{2}\right)$ there's a relative minimum.

$$
\begin{aligned}
f(x) & =\frac{1}{2} \sin 2 x \\
f\left(\frac{\pi}{4}\right) & =\frac{1}{2} \sin 2\left(\frac{\pi}{4}\right) \\
& =\frac{1}{2} \sin \frac{\pi}{2} \\
& =\frac{1}{2}-1 \\
& =\frac{1}{2}
\end{aligned}
$$

THEOREM: EXTREME VALUE THEOREM

Let f be a continuous function of two variables x and y defined on a closed bounded region R in the $x y$-plane.

1. There is at least one point in R where f takes on a minimum value.
2. There is at least one point in R where f takes on a maximum value.

DEFINITION: RELATIVE EXTREMA

Let f be a function defined on a region R containing $\left(x_{0}, y_{0}\right)$.

1. The function f has a relative minimum at $\left(x_{0}, y_{0}\right)$ if $f(x, y) \geq f\left(x_{0}, y_{0}\right)$ for all x and y in an open disk containing $\left(x_{0}, y_{0}\right)$.
2. The function f has a relative maximum at $\left(x_{0}, y_{0}\right)$ if $f(x, y) \leq f\left(x_{0}, y_{0}\right)$ for all x and y in an open disk containing $\left(x_{0}, y_{0}\right)$.

DEFINITION: CRITICAL POINT

Let f be defined on an open region R containing $\left(x_{0}, y_{0}\right)$. The point $\left(x_{0}, y_{0}\right)$ is a critical point of f if one of the following is true.

1. $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$
2. $f_{x}\left(x_{0}, y_{0}\right)$ or $f_{y}\left(x_{0}, y_{0}\right)$ does not exist

THEOREM: RELATIVE EXTREMA OCCUR ONLY AT CRITICAL POINTS
If f has a relative extremum at $\left(x_{0}, y_{0}\right)$ on an open region R, then $\left(x_{0}, y_{0}\right)$ is a critical point of f.

THEOREM: SECOND PARTIALS TEST
Let f have continuous partial derivatives on an open region containing a point (a, b) for which $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$. To test for relative extrema of f, consider the quantity $d=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.

1. If $d>0$ and $f_{x x}(a, b)>0$, then f has a relative minimum at (a, b).
2. If $d>0$ and $f_{x x}(a, b)<0$, then f has a relative maximum at (a, b).
3. If $d<0$, then $(a, b, f(a, b))$ is a saddle point.
4. The test is inconclusive if If $d=0$.

Example 1: Examine the function for relative extrema and saddle points.

$$
\begin{aligned}
& g(x, y)=x y \\
& g_{x}(x, y)=y \rightarrow 0=y \rightarrow y=0=b \\
& g_{x x}(x, y)=0 \rightarrow g_{x x}(0,0)=0 \\
& g_{y}(x, y)=x \rightarrow 0=x \rightarrow x=0=a \\
& g_{y y}(x, y)=0 \rightarrow g_{y y}(0,0)=0 \\
& g_{x y}(x, y)=1 \rightarrow g_{x y}(0,0)=1 \\
& d=g_{x x}(0,0) \cdot g_{y y}(0,0)-\left[g_{x y}(0,0)\right]^{2} \\
& d=0 \cdot 0-(1)^{2} \\
& d=-1 \\
& (0,0) \text { is a critical } \\
& \text { point } \\
& d=-1<0 \\
& \text { So there is a saddle } \\
& \begin{array}{l}
\text { point at }(0,0, g(0,0)) \\
=(0,0,0)
\end{array}
\end{aligned}
$$

Example 2: Find the critical points and test for relative extrema. List the critical points for which the Second Partials Test fails.

\[

\]

$$
\begin{aligned}
& f_{y y}(x, y) \\
& f_{y y}(2,-3)=6(-3)+18=0 \\
& x_{y}(x, y)=0
\end{aligned}
$$

$d=0.0-0^{2} \rightarrow d=0$ so the Ind partials test fails at
Example 3: A function f has continuous second partial derivatives on an open region containing the critical point (a, b). If $f_{x x}(a, b)$ and $f_{y y}(a, b)$ have opposite signs, what is implied?

$$
\begin{aligned}
d & =f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2} \\
& =(-) \cdot(+)-\frac{p^{2}}{\text { positive }}
\end{aligned}
$$

= negativesubtract a positive
$=$ negative
\Rightarrow saddle point

