

When you are done with your homework you should be able to...
π Differentiate a vector-valued function

$$
\frac{\partial y}{\partial x}=\frac{12 x \sin 3 x \cos 3 x-\sin ^{2} 3 x}{2 x^{3 / 2}}
$$

π Integrate a vector-valued function
Warm-up 1: Evaluate the following derivatives with respect to x.

$$
\begin{aligned}
& 1 \frac{\partial}{\partial x} y \frac{\partial \sin ^{2} 3 x}{\partial x} \sqrt{x} \\
& \frac{\partial y}{\partial x}=\frac{\left[2(\sin 3 x)^{\prime}(\cos 3 x)(3)\right]\left(x^{1 / 2}\right)-\sin ^{2} 3 x\left(\frac{1}{2} x^{-1 / 2}\right)}{(\sqrt{x})^{2}} \\
& \frac{\partial y}{\partial x}=\frac{\frac{1}{2} x^{-1 / 2}\left(12 x^{1} \sin 3 x \cos 3 x-\sin ^{2} 3 x\right)}{x}
\end{aligned}
$$

$\frac{2 . \partial}{d x} f(x)=\frac{d x e}{\partial x}$

$$
\begin{aligned}
& f^{\prime}(x)=1 e^{-2 x}+x\left(-2 e^{-2 x}\right) \\
& f^{\prime}(x)=\frac{1-2 x}{(5 x)^{2 / 3} e^{2 x}}
\end{aligned}
$$

3. $y=\ln \left(\frac{5 x}{e^{x^{2}}}\right)^{2 / 3}-\frac{6}{x}-\arctan 3 x^{3}$

$$
\begin{array}{ll}
y=\frac{2}{3} \ln 5 x-\frac{2}{3} \ln e^{x^{2}}-6 x^{-1}-\arctan \left(3 x^{3}\right) & u=3 x^{3} \\
\frac{\partial y}{\partial x} y=\frac{\partial}{3} \ln 5 x \frac{\partial}{\partial x^{2}} \frac{2}{3} x^{2}-\frac{\partial}{\partial x} x^{-1}-\frac{\partial}{\partial x} \arctan \left(3 x^{3}\right) & u=9 x^{2} \\
\frac{\partial y}{\partial x}=\frac{2}{3}\left(\frac{8}{5 x}\right)-\frac{2}{3}(2 x)-6\left(-x^{-2}\right)-\frac{9 x^{2}}{1+9 x^{6}} \\
\begin{array}{ll}
\text { Warm-up 2: Integrate. } & \frac{\partial y}{\partial x}=\frac{2}{3 x}-\frac{4 x}{3}+\frac{6}{x^{2}}-\frac{9 x^{2}}{1+9 x^{6}}
\end{array} &
\end{array}
$$

1. $\int\left(6 x^{2}-\sin ^{2} 3 x\right) d x$

$$
\begin{aligned}
& =\frac{6 x^{3}}{3}-\frac{1}{2}(1-\cos 6 x) d x \\
& =2 x^{3}-\frac{1}{2}\left(x-\frac{\sin 6 x}{6}\right)+C \\
& =2 x^{3}-\frac{x}{2}+\frac{1}{12} \sin 6 x+C
\end{aligned}
$$

2. $\int \frac{\sqrt{\ln x}}{x} d x=\int \frac{u^{1 / 2}}{x}\left(x^{1} d u\right)$

$$
\begin{aligned}
& =\int u^{1 / 2} d u \\
& =\frac{u^{3 / 2}}{\frac{3}{2}}+C \\
& =\frac{2}{3}(\ln x)^{3 / 2}+C
\end{aligned}
$$

3. $\int \frac{4}{\sqrt{1-x^{2}}} d x=4 \arcsin x+C$

DEFINITION OF THE DERIVATIVE OF A VECTOR-VALUED FUNCTION
The derivative of a vector-valued function \mathbf{r} is defined by

$$
\mathbf{r}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}
$$

for all t for which the limit exists. If $\mathbf{r}^{\prime}(c)$ exists, then \mathbf{r} is differentiable at c. If $\mathbf{r}^{\prime}(c)$ exists for all c in an open interval I then \mathbf{r} is differentiable on the open interval I. Differentiability of vector-valued functions can be extended to closed intervals by considering one-sided limits.
Other notation: $\mathbf{r}^{\prime}(t), \frac{d}{d t}[\mathbf{r}(t)], D_{t}[\mathbf{r}(t)], \frac{d \mathbf{r}}{d t}$

THEOREM: DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

1. If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where f and g are differentiable functions of t, then $\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}$. provided f and g have limits as $t \rightarrow a$.
2. If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions of t, then $\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}$.
Higher-order derivatives of vector-valued functions are obtained by successive differentiation of each component function.

The parametrization of the curve represented by the vector-valued function $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ is smooth on an open interval I if f^{\prime}, g^{\prime}, and h^{\prime} are continuous on I and $\mathbf{r}^{\prime}(t) \neq \mathbf{0}$ for any value of t on the open interval I.

THEOREM: PROPERTIES OF THE DERIVATIVE
Let \mathbf{r} and \mathbf{u} be differentiable vector-valued functions of t, let f be a differentiable real-valued function of t, and let c be a scalar.

1. $D_{t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
2. $D_{t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=\mathbf{r}^{\prime}(t) \pm \mathbf{u}^{\prime}(t)$
3. $D_{t}[f(t) \mathbf{u}(t)]=f(t) \mathbf{w}^{\prime}(t)+f^{\prime}(t) \mathbf{u s}(t)$
4. $D_{t}[\mathbf{r}(t) \cdot \mathbf{u}(t)]=\mathbf{r}(t) \cdot \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \cdot \mathbf{u}(t)$
5. $D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t)$
6. $D_{t}[\mathbf{r}(f(t))]=\mathbf{r}^{\prime}(f(t)) \cdot f^{\prime}(t)$
7. If $\mathbf{r}(t) \cdot \mathbf{r}(t)=c$, then $\mathbf{r}(t) \cdot \mathbf{r}^{\prime}(t)=0$

Example 1: Find $\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)$.

$$
\begin{aligned}
& \frac{\partial}{\partial t} \mathbf{r}(t) \stackrel{\partial}{\partial t}\left(t^{2}+t\right) \mathbf{i}+\frac{\partial}{\partial t}\left(t^{2}-t\right) \mathbf{j} \\
& \vec{r}^{\prime}(t)=(2 t+1) \hat{\imath}+(2 t-1) \hat{\jmath} \rightarrow\langle 2 t+1,2 t-1\rangle \\
& \vec{r}^{\prime \prime}(t)=2 \hat{\imath}+2 \hat{\jmath} \rightarrow\langle 2,2\rangle \\
& \vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)=(2 t+1)(2)+(2 t-1)(2) \\
&=2(2 t+1+2 t-1) \\
&=2(4 t) \\
&=8 t
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example 2: Find } D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)] \quad \frac{\partial}{\partial t}[\vec{r}(t) \times \vec{u}(t)] \\
& \begin{aligned}
\mathbf{r}(t)= & =\mathbf{i}+2 \sin t \mathbf{j}+2 \cos t \mathbf{k}, \\
\mathbf{u}(t)= & =\frac{1}{t} \mathbf{i}+2 \sin t \mathbf{j}+2 \cos t \mathbf{k},
\end{aligned} \\
& \begin{aligned}
\vec{r}(t) \times \vec{u}(t) & =\left|\begin{array}{ccc}
\left.\hat{i} \sin t\left(t^{-1}-t\right)+\cos t\left(-t^{-2}-1\right)\right] \hat{\jmath}+\left[\cos t\left(t-t^{-1}\right)+\sin t\right. \\
t & 2 \sin t & 2 \cos t \\
\left.\left(1+t^{-2}\right)\right] k \\
t^{-1} & 2 \sin t & 2 \cos t
\end{array}\right| \\
= & (4 \sin t \cos t-4 \cos t \sin t) \hat{\imath}-\left(2 t \cos t-2 t^{-1} \cos t\right) \hat{\jmath}+\left(2 t \sin t-2 t^{-1} \sin t\right) \hat{k} \\
= & 2\left[\left(t^{-1} \cos t-t \cos t\right) \hat{\jmath}+\left(t \sin t-t^{-1} \sin t\right) \hat{k}\right] \\
= & 2\left[\cos t\left(t^{-1}-t\right) \hat{\jmath}+\sin t\left(t-t^{-1}\right) \hat{k}\right]
\end{aligned}
\end{aligned}
$$

DEFINITION OF INTEGRATION OF VECTOR-VALUED FUNCTIONS

1. If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, where f and g are continuous on $[a, b]$ then the

$$
\frac{\text { indefinite integral (antiderivative) of } \mathbf{r} \text { is }}{\int \mathbf{r}(t) d t=\left[\int f(t) d t\right] \mathbf{i}+\left[\int g(t) d t\right] \mathbf{j}}+\overrightarrow{\mathbf{C}}
$$

and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}
$$

2. If $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are continuous on $[a, b]$ then the indefinite integral (antiderivative) of \mathbf{r} is

$$
\int \mathbf{r}(t) d t=\left[\int f(t) d t\right] \mathbf{i}+\left[\int g(t) d t\right] \mathbf{j}+\left[\int h(t) d t\right] \mathbf{k}+\stackrel{\rightharpoonup}{\mathbf{C}}
$$

and its definite integral over the interval $a \leq t \leq b$ is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{k}
$$

Example 3: Evaluate the indefinite integral

$$
\begin{aligned}
\int\left(4 t^{3} \mathbf{i}+6 \mathbf{j}-4 \sqrt{\mathbf{t}}\right) d t & =\left(\frac{{ }^{1} t^{4}}{4{ }^{4}}+C_{1}\right) \hat{\imath}+\left(\frac{6 t^{2}}{x}+C_{2}\right) \hat{\jmath}-\left(\frac{4 t^{3 / 2}}{3 / 2}+C_{3}\right) \hat{k} \\
& =t^{4} \hat{\imath}+3 t^{2} \hat{\jmath}-\frac{8}{3} t^{3 / 2} \hat{k}+\vec{C}
\end{aligned}
$$

Example 4: Evaluate the definite integral

$$
\left.\begin{array}{rl}
\int_{0}^{\pi / 4}[\sec t \tan t \mathbf{i}+\tan t \mathbf{j}+2 \sin t \cos t \mathbf{k}] d t & =\left(\left.\sec t\right|_{0} ^{\pi / 4} \hat{\imath}-\left(\left.\ln |\cos t|\right|_{0} ^{\pi / 4} \hat{\jmath}\right.\right. \\
& +\int 2 \underline{u} \cos t\left(\frac{\partial u}{\cos t}\right)
\end{array} \quad \begin{array}{l}
2 \sin \\
=s
\end{array}\right)
$$

