

When you are done with your homework you should be able to...
π Analyze and sketch a space curve given by a vector-valued function
π Extend the concepts of limits and continuity to vector-valued functions

$$
\begin{aligned}
& \text { Warm-up: Evaluate the following limits analytically. } \\
& \begin{aligned}
1.2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} & =2(1) \\
& =2
\end{aligned}
\end{aligned}
$$

3.

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(e^{-x}-\frac{6}{x}-\arctan x\right) & =\lim _{x \rightarrow \infty} \frac{1}{e^{x}}-\lim _{x \rightarrow \infty} \frac{6}{x}-\lim _{x \rightarrow \infty} \arctan x \\
& =0-0-\frac{\pi}{2} \\
& =-\frac{\pi}{2}
\end{aligned}
$$

DEFINITION OF VECTOR-VALUED FUNCTION
A function of the form

$$
\begin{aligned}
\mathbf{r}(t) & =f(t) \mathbf{i}+g(t) \mathbf{j} \\
& =\langle f(t), g(t)\rangle
\end{aligned}
$$

or

$$
\begin{aligned}
\mathbf{r}(t) & =f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k} \quad \text { space } \\
& =\langle f(t), g(t), h(t)\rangle
\end{aligned}
$$

is a vector-valued function, where the component functions f, g, and h are realvalued functions of the parameter t. The domain is considered to be the intersection of the domains of the component functions f, g, and h, unless stated otherwise.

Example 1: Find the domain of the vector-valued function.

$$
\begin{aligned}
& \mathbf{r}(t)=\sqrt{4-t^{2} \mathbf{i}+t^{2} \mathbf{j}-6 t \mathbf{k}} \\
& f(t)=\sqrt{4-t^{2}}, D:[-2,2] \\
& \left.g(t)=t^{2}, D: \in \infty, \infty\right) \\
& h(t)=-6 t, D:(-\infty, \infty)
\end{aligned} \quad \begin{aligned}
& \text { Domain } \\
& \vec{r}(t):[-2,2]
\end{aligned}
$$

Example 2: Sketch the curve represented by the vector-valued function.
a) $\mathbf{r}(t)=(1-t) \mathbf{i}+\sqrt{t} \mathbf{j}$

$$
\begin{aligned}
& D:[0, \infty) \\
& \vec{r}(0)=(1-(0)) \hat{\imath}+\sqrt{0} \hat{\jmath}=\hat{\imath} \\
& \vec{r}(1)=(1-1) \hat{\imath}+\sqrt{1} \hat{\jmath}=\hat{\jmath} \\
& \vec{r}(4)=(1-4) \hat{\imath}+\sqrt{4} \hat{\jmath}=-3 \hat{\imath}+2 \hat{\jmath} \\
& r(9)=(1-9) \hat{\imath}+\sqrt{9} \hat{\jmath}=-8 \hat{\imath}+3 \hat{\jmath}
\end{aligned}
$$

$$
\text { b) } \mathbf{r}(t)=(3 \cos t) \mathbf{i}+(4 \sin t) \mathbf{j}+\frac{t}{2} \mathbf{k}
$$

$D:(-\infty, \infty)$

$$
\begin{aligned}
\vec{r}(0) & =3 \cos 0 \hat{\imath}+4 \sin 0 \hat{\jmath}+\frac{0}{2} \hat{k} \\
& =3 \hat{\imath} \\
r\left(\frac{\pi}{2}\right) & =4 \hat{\jmath}+\frac{\pi}{4} \hat{k} \\
r(\pi) & =-3 \hat{\imath}+\frac{\pi}{2} \hat{k} \\
r\left(\frac{3 \pi}{2}\right) & =-4 \hat{\jmath}+\frac{3 \pi}{4} \hat{k} \\
r(2 \pi) & =3 \hat{\imath}+\frac{\pi}{k} \\
r\left(\frac{5 \pi}{2}\right) & =4 \hat{\jmath}+\frac{5 \pi}{4} \hat{k} \\
r(3 \pi) & =-3 \hat{\imath}+\frac{3 \pi}{2} \hat{k}
\end{aligned}
$$

$$
r\left(\frac{7 \pi}{2}\right)=-4 \hat{j}+\frac{7 \pi}{4}
$$

DEFINITION OF THE LIMIT OF A VECTOR-VALUED FUNCTION

1. If \mathbf{r} is a vector-valued function such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}
$$

provided f and g have limits as $t \rightarrow a$.
2. If \mathbf{r} is a vector-valued function such that $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}+\left[\lim _{t \rightarrow a} h(t)\right] \mathbf{k}
$$

provided f, g and h have limits as $t \rightarrow a$.

DEFINITION OF CONTINUITY OF A VECTOR-VALUED FUNCTION
A vector-valued function \mathbf{r} is continuous at the point given by $t=a$ if the limit of $\mathbf{r}(t)$ exists as $t \rightarrow a$ and $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)$.

A vector-valued function \mathbf{r} is continuous on an interval I if it is continuous a \dagger every point in the interval.

Example 3: Evaluate the limit and determine the intervals) on which the vectorvalued function is continuous.

$$
\begin{aligned}
& \lim _{t \rightarrow 1}\left((\ln t) \mathbf{i}-\left(\frac{1-t^{2}}{1-t}\right) \mathbf{j}+(\arcsin t) \mathbf{k}\right) \\
= & (\ln \mid) \hat{1}-\left(\lim _{t \rightarrow 1} \frac{12 t}{1}\right) \hat{\jmath}+\frac{\pi}{2} \hat{k} \\
= & 0 \hat{\imath}-2(1) \hat{\jmath}+\frac{\pi}{2} \hat{k} \\
= & -2 \hat{\jmath}+\frac{\pi}{2} \hat{k}
\end{aligned}
$$

continuous on $(0,1)$.

$$
\begin{aligned}
& f(t)=\ln t \\
& D:(0, \infty) \\
& g(t)=\frac{1-t^{2}}{1-t} \\
& D:(-\infty, 1) \cup(1, \infty) \\
& h(t)=\arcsin t \\
& D:[-1,1]
\end{aligned}
$$

