

When you are done with your homework you should be able to...
π Find a unit tangent vector at a point on a space curve
π Find the tangential and normal components of acceleration
Warm-up: Consider the two curves given by $y_{1}=1-x^{2}$ and $y_{2}=x^{2}-1$.
a. Find the unit tangent vectors to each curve at their points of intersection.

| $\frac{\text { Point of intersection }}{1-x^{2}=x^{2}-1}$ |
| :--- | :--- |
| $2=2 x^{2}$ | \left\lvert\, | Find unit tangent vectors |
| :--- | :--- |
| $x^{2}=1$ |
| $x= \pm 1$ |\quad| $P(1,0) \rightarrow Q(2,-2)$ | |
| :--- | :--- |
| $\vec{u}=\langle 1,-2\rangle$ | tangent |
| $\frac{\vec{u}}{\\|\vec{u}\\|}=\frac{\langle 1,-2\rangle}{\sqrt{5}}$ | to y. |\right.

b. Find the angles $\left(0 \leq \theta \leq 90^{\circ}\right)$ between the curves at their points of intersection.
At $(1,0), \quad \cos \theta=\frac{1}{\sqrt{5}}\langle 1,-2\rangle \cdot \frac{1}{\sqrt{5}}\langle 1,2\rangle$

$$
\theta \approx 53.1^{\circ}
$$

$$
\begin{aligned}
& \cos \theta=\frac{1}{5}[(1)(1)+(-2)(2)] \\
& \cos \theta=\frac{-3}{5}
\end{aligned}
$$

$$
\begin{aligned}
& s \theta=\frac{-3}{5} \\
& \theta=\arccos \frac{-3}{5} \quad \text { ref } \& \theta \approx 53.1^{\circ} \\
& \theta \approx 126.9^{\circ}
\end{aligned}
$$

DEFINITION OF UNIT TANGENT VECTOR
Let C be a smooth curve represented by \mathbf{r} on an open interval I ．The unit tangent vector $\mathbf{T}(t)$ at t is defined to be

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}, \mathbf{r}^{\prime}(t) \neq \mathbf{0}
$$

The tangent line to a curve at a point is the line passing through point and parallel to the unit tangent vector．

Example 1：Find the unit tangent vector to the curve $\mathbf{r}(t)=e^{t} \cos t \mathbf{i}+e^{t} \mathbf{j}$ when

$$
\begin{aligned}
& t=0 \\
& \vec{r}^{\prime}(t)=\left[e^{t} \cos t+e^{t}(-\sin t)\right] \hat{\imath}+e^{t} \hat{\jmath}\left[\left\|\vec{r}^{\prime}(0)\right\|=\sqrt{2}\right. \\
& \vec{r}^{\prime}(t)=e^{t}[(\cos t-\sin t) \hat{\imath}+\hat{\jmath}] \\
& \vec{r}^{\prime}(0)=e^{0}[(\cos 0-\sin 0) \hat{\imath}+\hat{\jmath}] \\
& \vec{r}^{\prime}(0)=1[(1-0) \hat{\imath}+\hat{\imath}+\hat{\jmath}) \\
& \vec{r}^{\prime}(0)=\hat{\imath}+\hat{\jmath}
\end{aligned}
$$

Example 2：Consider the space curve $\mathbf{r}(t)=\left\langle t, t, \sqrt{4-t^{2}}\right\rangle$ at the point $(1,1, \sqrt{3})$ ．a．
a．Find the unit tangent vector at the given point．
（1）Find t ：

$$
\begin{aligned}
& x(t)=x, \rightarrow t=1 \\
& y(t)=y_{1} \rightarrow t=1 \\
& z(t)=z_{1} \rightarrow \sqrt{4-t^{2}}=\sqrt{3} \\
& 4-t^{2}=3 \\
& 1=t^{2} \\
& \text { 少にも }
\end{aligned}
$$

（2）Find $\vec{T}(t)$
$\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$

$$
\begin{aligned}
& =\frac{\left.\| 1,1, \frac{-2 t}{2 \sqrt{4-t^{2}}}\right\rangle}{=} \frac{\langle(t) \|}{\sqrt{(1)^{2}+(1)^{2}+\left(\frac{-t}{\sqrt{4-t^{2}}}\right)^{2}}} \\
& =\frac{\left\langle 1,1,-\frac{t}{\left.\sqrt{4-t^{2}}\right\rangle}\right.}{\sqrt{2+t^{2} /\left(4-t^{2}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{T}(0)=\frac{1}{\sqrt{2}}(\hat{\imath}+\hat{\jmath}) \\
& \text { (3) Find } \vec{T}(1) \\
& \left\|r^{\prime}(0)\right\|=\sqrt{2} \\
& \vec{T}(1)=\left\langle 1,1, \frac{-(1)}{\sqrt{4-(1)^{2}}}\right\rangle \\
& \begin{array}{l}
=\frac{\left\langle 1,1,-\frac{1}{\sqrt{3}}\right\rangle}{\sqrt{\frac{7}{3}}} \\
=\sqrt{\frac{\sqrt{21}}{7}\left\langle 1,1,-\frac{\sqrt{3}}{3}\right\rangle}
\end{array}
\end{aligned}
$$

b. Find a set of parametric equations for the line tangent to the space curve at the given point.

$$
\vec{T}(1)=\frac{\sqrt{21}}{7}\left\langle 1,1,-\frac{\sqrt{3}}{3}\right\rangle
$$

So $a=1$

$$
b=1
$$

$$
c=-\frac{\sqrt{3}}{3}
$$

$$
\begin{aligned}
& x=a t+x_{0} \rightarrow \\
& y=b t+y_{0} \rightarrow \begin{array}{l}
x=t+1 \\
y=t+1 \\
z=c t+z_{0} \rightarrow z=-\frac{\sqrt{3}}{3} t+\sqrt{3}
\end{array}
\end{aligned}
$$

DEFINITION: PRINCIPAL UNIT NORMAL VECTOR
Let C be a smooth curve represented by \mathbf{r} on an open interval I. If $\mathbf{T}^{\prime}(t) \neq \mathbf{0}$, then the principal unit normal vector $\mathbf{N}(t)$ at t is defined to be

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

At any point on a curve, a unit normal vector is orthogonal to the unit tangent vector. The principal unit normal vector points in the direction in which the curve is turning.

Example 3: Find the principal unit normal vector to the curve $\mathbf{r}(t)=\ln t \mathbf{i}+(t+1) \mathbf{j}$ at the time $t=2$.
(1) Find $\tau(t)$

$$
\text { So } \vec{J}(t)=\left\langle\left(1+t^{2}\right)^{-1 / 2}, \frac{t}{\sqrt{1+t^{2}}}\right\rangle
$$

$$
\begin{aligned}
& \vec{T}(t)=\frac{\frac{1}{t} \hat{\imath}+\hat{\jmath}}{\sqrt{\frac{1}{t^{2}}+1}} \\
& \vec{T}(t)=\frac{t^{-1} \hat{\imath}+\hat{\jmath}}{\sqrt{\frac{1+t^{2}}{t^{2}}}} \\
& \vec{T}(t)=\frac{\hat{\imath}+t \hat{\jmath}}{\sqrt{1+t^{2}}}
\end{aligned}
$$

$$
\vec{\tau}(2)=\left\langle 5^{-1 / 2}, \frac{2}{\sqrt{5}}\right\rangle
$$

$$
\vec{T}(2)=\frac{1}{\sqrt{5}}\langle 1,2\rangle
$$

(2) Find $\vec{N}(t)$

$$
\frac{\partial}{\partial t}\left(\left(1+t^{2}\right)^{-1 / 2}\right)
$$

$$
\begin{aligned}
& \vec{N}(t)=\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|} \\
& \vec{T}(t)=\left\langle\left(1+t^{2}\right)^{-1 / 2}, \frac{t}{\sqrt{1+t^{2}}}\right\rangle \\
& =-\frac{1}{4}\left(1+t^{2}\right)^{-3 / 2} \cdot x t \\
& =\frac{-t}{\left(1+t^{2}\right)^{3 / 2}} \\
& T^{\prime}(t)=\left\langle\frac{-t}{\left(1+t^{2}\right)^{3 / 2}}, \frac{1}{\left(1+t^{2}\right)^{3 / 2}}\right\rangle \\
& \frac{\partial}{\partial t}\left(\frac{t}{\left(1+t^{2}\right)^{1 / 2}}\right) \\
& \left\|T^{\prime}(t)\right\|=\sqrt{\frac{t^{2}}{\left(1+t^{2}\right)^{3}}+\frac{1}{\left(1+t^{2}\right)^{3}}} \\
& =\frac{1\left(1+t^{2}\right)^{1 / 2}-t\left[\frac{1}{2}\left(1+t^{2}\right)^{-1 / 2} \cdot t\right]}{1+t^{2}} \\
& =\frac{\left(1+t^{2}\right)^{1 / 2}}{\left(1+t^{2}\right)^{3 / 2}} \leq=\frac{1}{1+t^{2}} \\
& =\frac{\left(1+t^{2}\right)^{-1 / 2}\left[\left(1+t^{2}\right)-t^{2}\right]}{\left(1+t^{2}\right)^{1}} \\
& \vec{N}(t)=\left(1+t^{2}\right)^{2 / 2}\left\langle-\frac{t}{\left(1+t^{2}\right)^{3 / 2}}, \frac{1}{\left(1+t^{2}\right)^{3 / 2}}\right\rangle=\frac{1}{\left(1+t^{2}\right)^{3 / 2}} \\
& \vec{N}(t)=\frac{1}{\sqrt{1+t^{2}}}\langle-t, 1\rangle \\
& \vec{N}(2)=\frac{1}{\sqrt{1+(2)^{2}}}\langle-(2), 1\rangle \\
& \vec{N}(2)=\frac{1}{\sqrt{5}}\langle-2,1\rangle
\end{aligned}
$$

THEOREM: ACCELERATION VECTOR
If $\mathbf{r}(t)$ is the position vector for a smooth curve C and $\mathbf{N}(t)$ exists, then the acceleration vector $\mathbf{a}(t)=a_{\mathrm{T}} \mathbf{T}(t)+a_{\mathrm{N}} \mathbf{N}(t)$ lies in the plane determined by $\mathbf{T}(t)$ and $\mathbf{N}(t)$.

THEOREM: TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION
If $\mathbf{r}(t)$ is the position vector for a smooth curve C and $\mathbf{N}(t)$ exists, then the tangential and normal components of acceleration are as follows:

$$
\begin{aligned}
& a_{\mathrm{T}}=D_{t}[\|\mathbf{v}\|]=\mathbf{a} \cdot \mathbf{T}=\frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{v}\|} \\
& a_{\mathrm{N}}=\|\mathbf{v}\|\left\|\mathbf{T}^{\prime}(t)\right\|=\mathbf{a} \cdot \mathbf{N}=\frac{\|\mathbf{v} \times \mathbf{a}\|}{\|\mathbf{v}\|}=\sqrt{\|\mathbf{a}\|^{2}-a_{\mathbf{r}}^{2}}
\end{aligned}
$$

Note that $a_{\mathrm{N}} \geq 0$. The normal component of acceleration is also called the centripetal component of acceleration.

Example 4: Find $\mathbf{T}(t), \mathbf{N}(t), a_{\mathbf{T}}$, and a_{N} for the plane curve $\mathbf{r}(t)=e^{t} \mathbf{i}+e^{-t} \mathbf{j}+t \mathbf{k}$ at the time $t=0$.

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(-\left(e^{4 t}+e^{2 t}+1\right)^{-1 / 2}\right)=\frac{1}{x}\left(e^{4 t}+e^{2 t}+1\right)^{-3 / 2} \cdot\left(4 e^{2}+x e^{2 t}\right) \\
& =\frac{2 e^{4 t}+e^{2 t}}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}} \int e^{2 t}\left(2 e^{2 t}+1\right) \\
& \frac{\partial}{\partial t}\left(\frac{e^{t}}{\left(e^{4 t}+e^{2 t}+1\right)^{1 / 2}}\right)=\frac{e^{t}\left(e^{4 t}+e^{2 t}+1\right)^{1 / 2}-e^{t}\left(\frac{4 e^{2 t}+x e^{2 t}}{x\left(e^{4 t}+e^{2 t}+1\right)^{1 / 2}}\right)}{e^{4 t}+e^{2 t}+1} \\
& =\frac{e^{t}\left(e^{4 t}+e^{2 t}+1\right)^{-1 / 2}\left[\left(e^{4 t}+e^{2 t}+1\right)^{1}-\left(2 e^{4 t}+e^{2 t}\right)\right]}{e^{4 t}+e^{2 t}+1} \\
& =\frac{e^{t}\left(-e^{4 t}+1\right)}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}} \\
& \sqrt{\left[\frac{e^{4 t}\left(e^{2 t}+2\right)}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}}\right]^{2}+\left[\frac{e^{2 t}\left(2 e^{2 t}+1\right)}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}}\right]^{2}+\left[\frac{e^{t}\left(1-e^{4 t}\right)}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}}\right]^{2}} \\
& =\sqrt{\frac{e^{4 t}\left(e^{2 t}+2\right)^{2}+e^{4 t}\left(2 e^{2 t}+1\right)^{2}+e^{2 t}\left(1-e^{4 t}\right)^{2}}{\left(e^{4 t}+e^{2 t}+1\right)^{3}}} \\
& \vec{N}(t)=\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}\left\langle\frac{e^{2 t}\left(e^{2 t}+2\right)}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}}, \frac{e^{2 t}\left(2 e^{2 t}+1\right)}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}}, \frac{e^{t}\left(1-e^{4 t}\right)}{\left(e^{4 t}+e^{2 t}+1\right)^{3 / 2}}\right\rangle \\
& {\left[e^{4 t}\left(e^{2 x}+2\right)^{2}+e^{4 t}\left(2 e^{2 x}+1\right)^{2}+e^{2 t}\left(1-e^{4 t}\right)^{2}\right]^{1 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{N}(0)=\frac{\left\langle e^{0}\left(e^{0}+2\right), e^{0}\left(2 e^{0}+1\right), e^{0}\left(1-e^{0}\right)\right\rangle}{\left[e^{0}\left(e^{0}+2\right)^{2}+e^{0}\left(2 e^{0}+1\right)^{2}+e^{0}\left(1-e^{0}\right)^{2}\right]^{\frac{1}{2}}} \\
& \vec{N}(0)=\frac{\langle 3,3,0\rangle}{\sqrt{9+9+0}} \\
& \vec{N}(0)=\frac{\langle 3,3,0\rangle}{3 \sqrt{2}} \\
& \vec{N}(0)=\frac{1}{\sqrt{2}}\langle 1,1,0\rangle
\end{aligned}
$$

at $t=0$,

$$
\begin{aligned}
a_{\vec{T}} & =\vec{a}(0) \cdot T(0) \\
& =\langle 1,1,0\rangle \cdot \frac{1}{\sqrt{3}}\langle 1,-1,1\rangle \\
& =\frac{1}{\sqrt{3}}[(1)(1)+(1)(-1)+(0)(1)] \\
& =\frac{1}{\sqrt{3}} \cdot 0 \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
a_{\vec{N}} & =\vec{a}(0) \cdot \vec{N}(0) \\
& =\langle 1,1,0\rangle \cdot \frac{1}{\sqrt{2}}\langle 1,1,0\rangle \\
& =\frac{1}{\sqrt{2}}(1+1+0)
\end{aligned} \quad \begin{array}{r}
=\frac{2}{\sqrt{2}} \\
=
\end{array}
$$

