1/28/11 Prep for Monday Wednesday Exam 1/ Ch.11 ·Finish 11.1-11.7 HW ·wamup and have questions ·11.1-11.7 HW is due · Lecture 11.7 ready. SINO = y y=rsin0 $\cos \theta = \frac{\chi}{r}$ ſ y $\chi^2 r \cos \Theta$ $r^2 = x^2 t y^2$ \sim $\tan \theta = \frac{y}{x}$

When you are done with your homework you should be able to ...

- π Use cylindrical coordinates to represent surfaces in space
- π Use spherical coordinates to represent surfaces in space

Warm-up: Convert the rectangular equation to polar form and sketch its graph by hand.

In a <u>cylindrical coordinate system</u> a point P in space is represented by an ordered triple (r, θ, z) .

- 1. (r, θ) is a polar representation of the projection of P in the xy-plane.
- 2. z is the directed distance from (r, θ) to P.

Conversion Guidelines

Cylindrical to rectangular: $x = r \cos \theta$, $y = r \sin \theta$, z = z

Rectangular to cylindrical: $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$, z = z

MATH 252/GRACEY

11.7

Example 1: Convert the point
$$\begin{pmatrix} -2, \frac{2\pi}{3}, 5 \end{pmatrix}$$
 to rectangular coordinates.
 $\chi = (\cos \Theta)$ $\chi = (\sin \Theta)$ $\chi = (\sin \Theta)$ $\chi = (-2, \frac{2\pi}{3}, 5) = ((1, \sqrt{3}, 5))$
 $\chi = -2(\cos \frac{2\pi}{3})$ $\chi = -2(\sin \frac{\pi}{3})$ $\chi = 2$
 $\chi = -2(-\frac{1}{2})$ $\chi = -2(\frac{\pi}{2})$ $\chi = -2(\frac{\pi}{2})$ $\chi = -5$
 $\chi = 1$ $\chi = -2(-\frac{1}{2})$ $\chi = -33$ $\chi = -5$
 $\chi = 1$ $\chi = -2(-\frac{1}{2})$ $\chi = -33$ $\chi = -5$
Example 2: Convert the point $(3,\sqrt{3},-1)$ to cylindrical coordinates.
 $r^2 = \chi^2 + \chi^2$ $+ \chi^2$ $+ 4\pi \theta = \frac{4\pi}{3}$ $\theta = \frac{\pi}{6}$ $\chi = -1$ $\chi = -1$

THE SPHERICAL COORDINATE SYSTEM

In a <u>spherical coordinate system</u>, a point P in space is represented by an ordered triple (ρ, θ, ϕ)

- 1. ρ is the distance between P and the origin $\rho \ge 0$.
- 2. θ is the same angle used in cylindrical coordinates for $r \ge 0$.

3. ϕ is the angle between the positive z-axis and the line segment \overline{OP} , $0 \le \phi \le \pi$. Note that the first and third coordinates, ρ and ϕ , are nonnegative. ρ is the lowercase Greek letter *rho* and ϕ is the lowercase Greek letter *phi*.

Conversion Guidelines

Spherical to rectangular: $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$

Rectangular to spherical: $\rho^2 = x^2 + y^2 + z^2$, $\tan \theta = \frac{y}{x}$, $\phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$

Spherical to cylindrical $r \ge 0$: $r^2 = \rho^2 \sin^2 \phi$, $\theta = \theta$, $z = \rho \cos \phi$

Cylindrical to spherical $r \ge 0$: $\rho = \sqrt{r^2 + z^2}$, $\theta = \theta$, $\phi = \arccos\left(\frac{z}{\sqrt{r^2 + z^2}}\right)$

 $Sin \phi = \frac{c}{R}, \quad r = \rho \sin \phi$ $r = (x^{2} + y^{2})$ $y = r \sin \phi$ $y = \rho \sin \phi \sin \phi$ $\frac{z}{R} = cos \phi$ $z = \rho \cos \phi$ $x = r \cos \phi$ $x = r \cos \phi$ $x = r \cos \phi$

11.7

Example 4: Convert the point given in cylindrical coordinates
$$(3, -\frac{\pi}{4}, 0)$$
 to
spherical coordinates.
Cy lindrical to spherical: $p = \sqrt{r^{2} + z^{2}}$
 $\theta = \theta$
 $p = \sqrt{(3)^{n} + 0^{n}}$, $\theta = -\frac{\pi}{4}$, $q = \arccos(\frac{\pi}{r^{2} + z^{2}})$
 $q = 3$, $\eta = -\frac{\pi}{4}$, $q = \arccos(\frac{\pi}{2})$
 $(3, -\frac{\pi}{4}, 0) = (3, -\frac{\pi}{4}, \frac{\pi}{2})$

Example 5: Find an equation in spherical coordinates for the equation $x^2 + y^2 - 3z^2 = 0$, given in rectangular coordinates.

$$\chi_{+}^{2} y_{-}^{2} - 3z_{-}^{2} = 0$$

$$(\chi)_{-}^{2} = (\varphi \sin \varphi \cos \varphi)_{-}^{2} = \varphi^{2} \sin^{2} \varphi \cos^{2} \varphi$$

$$(y)_{-}^{2} = (\varphi \sin \varphi \sin \varphi)_{-}^{2} = \varphi^{2} \sin^{2} \varphi \sin^{2} \varphi$$

$$(z)_{-}^{2} = (\varphi \cos \varphi)_{-}^{2} = \varphi^{2} \cos^{2} \varphi$$

$$(z)_{-}^{2} = (\varphi \cos \varphi)_{-}^{2} = \varphi^{2} \cos^{2} \varphi$$

$$(z)_{-}^{2} = (\varphi \cos \varphi)_{-}^{2} = \varphi^{2} \cos^{2} \varphi$$

$$(z)_{-}^{2} = (\varphi \cos \varphi)_{-}^{2} = \varphi^{2} \cos^{2} \varphi = 0$$

$$\varphi^{2} (\sin^{2} \varphi - 3\cos^{2} \varphi)_{-}^{2} = 0$$

$$\varphi^{2} (\sin^{2} \varphi - 3\cos^{2} \varphi)_{-}^{2} = 0$$

$$fan_{-}^{2} \varphi = 3$$

$$fan_{-}^{2} = 13$$

$$fan_{-}^{2} = 13$$

$$fan_{-}^{2} = 13$$

$$fan_{-}^{2} = 13$$

$$fan_{-}^{2} = 13$$