- warmup
- Lecturell.7

Prep for Monday

- Finish II. 1-1.7 HW and have questions ready

Wednesday

- Exam 1/Ch. II
- 11.1 - 11.7 HW is due

$$
\begin{aligned}
\sin \theta & =\frac{y}{r} \\
y & =r \sin \theta
\end{aligned}
$$

$$
\cos \theta=\frac{x}{r}
$$

$$
x=r \cos \theta
$$

$$
r^{2}=x^{2}+y^{2}
$$

$$
\tan \theta=\frac{y}{x}
$$

When you are done with your homework you should be able to...
π Use cylindrical coordinates to represent surfaces in space
π Use spherical coordinates to represent surfaces in space
Warm-up: Convert the rectangular equation to polar form and sketch its graph by hand.
$y^{2}=9 x$
$(r \sin \theta)^{2}=a(r \cos \theta)$
$r^{2} \sin ^{2} \theta=\operatorname{arcos} \theta$
$r^{2} \sin ^{2} \theta-9 r \cos \theta=0$
$r\left(r \sin ^{2} \theta-9 \cos \theta\right)=0$
$r=0 \quad r \sin ^{2} \theta-9 \cos \theta=0$ $r \sin ^{2} \theta=9 \cos \theta$

$$
r=9 \cot \theta \csc \theta
$$

THE CYLINDRICAL COORDINATE SYSTEM

In a cylindrical coordinate system a point P in space is represented by an ordered triple (r, θ, z).

1. (r, θ) is a polar representation of the projection of P in the $x y$-plane.
2. z is the directed distance from (r, θ) to P.

Conversion Guidelines

Cylindrical to rectangular: $x=r \cos \theta, y=r \sin \theta, z=z$
Rectangular to cylindrical: $r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}, z=z$

Example 1: Convert the point $\left(-2, \frac{2 \pi}{3}, 5\right)$ to rectangular coordinates.

$$
\left(-2, \frac{2 \pi}{3}, 5\right)=(1,-\sqrt{3}, 5)
$$

Example 2: Convert the point $(\widetilde{3, \sqrt{3}},-1)$ to cylindrical coordinates.

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& r^{2}=(3)^{2}+(\sqrt{3})^{2} \\
& r^{2}=12 \\
& r=\neq \sqrt{3}
\end{aligned}
$$

$$
\begin{array}{|l|l}
z=z & (3, \sqrt{3},-1) \\
z=-1 & =\left(2 \sqrt{3}, \frac{\pi}{6},-1\right)
\end{array}
$$

Example 3: Find an equation in cylindrical coordinates for the equation $x^{2}+y^{2}=8 x$, given in rectangular coordinates.

$$
r^{2}=8(r \cos \theta)
$$

$$
r^{2}-8 r \cos \theta=0
$$

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta \\
= & r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
= & r^{2}(1) \\
= & r^{2}
\end{aligned}
$$

$$
r(r-8 \cos \theta)=0
$$

$$
\text { or } \begin{array}{r}
r=8 \cos \theta \\
\pi
\end{array}
$$

$r=0$
included
in

THE SPHERICAL COORDINATE SYSTEM

In a spherical coordinate system, a point P in space is represented by an ordered triple (ρ, θ, ϕ).

1. ρ is the distance between P and the origin $\rho \geq 0$.
2. θ is the same angle used in cylindrical coordinates for $r \geq 0$.
3. ϕ is the angle between the positive z-axis and the line segment $\overline{O P}, 0 \leq \phi \leq \pi$. Note that the first and third coordinates, ρ and ϕ, are nonnegative. ρ is the lowercase Greek letter rho and ϕ is the lowercase Greek letter phi.

Conversion Guidelines

Spherical to rectangular: $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$
Rectangular to spherical: $\rho^{2}=x^{2}+y^{2}+z^{2}, \tan \theta=\frac{y}{x}, \phi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)$
Spherical to cylindrical $r \geq 0: r^{2}=\rho^{2} \sin ^{2} \phi, \theta=\theta, z=\rho \cos \phi$ Cylindrical to spherical $r \geq 0: \rho=\sqrt{r^{2}+z^{2}}, \theta=\theta, \phi=\arccos \left(\frac{z}{\sqrt{r^{2}+z^{2}}}\right)$

$$
\begin{aligned}
\sin \phi=\frac{r}{\rho}, r & =\rho \sin \phi \\
r & =\sqrt{x^{2}+y^{2}} \\
\frac{y}{r}=\sin \theta \rightarrow y & =r \sin \theta \\
y & =\rho \sin \phi \sin \theta \\
\frac{z}{\rho} & =\cos \phi \\
z & =\rho \cos \phi \\
\frac{x}{r} & =\cos \theta \\
x & =r \cos \theta \\
x & =\rho \sin \phi \cos \theta
\end{aligned}
$$

Example 4: Convert the point given in cylindrical coordinates $\left(3,-\frac{\pi}{4}, 0\right)$ to spherical coordinates.
cylindrical to spherical: $p=\sqrt{r^{2}+z^{2}}$

$$
\theta=\theta
$$

$$
\begin{aligned}
& \rho=\sqrt{(3)^{2}+0^{2}}, \theta=-\frac{\pi}{4}, \quad \phi=\arccos \left(\frac{z}{\sqrt{r^{2}+z^{2}}}\right) \\
& \rho=3 \\
& \\
& \\
& \\
& \binom{\left(3,-\frac{\pi}{4}, 0\right)=}{\hline} \\
&
\end{aligned}
$$

Example 5: Find an equation in spherical coordinates for the equation $x^{2}+y^{2}-3 z^{2}=0$, given in rectangular coordinates.

$$
\begin{gathered}
x^{2}+y^{2}-3 z^{2}=0 \\
(x)^{2}=(\rho \sin \phi \cos \theta)^{2}=\rho^{2} \sin ^{2} \phi \cos ^{2} \theta \\
(y)^{2}=(\rho \sin \phi \sin \theta)^{2}=\rho^{2} \sin ^{2} \phi \sin ^{2} \theta \\
(z)^{2}=(\rho \cos \phi)^{2}=\rho^{2} \cos ^{2} \phi \\
\rho^{2} \sin ^{2} \phi \cos ^{2} \theta+\rho^{2} \sin ^{2} \phi \sin ^{2} \theta-3 \rho^{2} \cos ^{2} \phi=0 \\
\rho^{2} \phi \sin ^{2} \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)-3 \rho^{2} \cos ^{2} \phi=0 \\
\rho^{2}\left(\sin ^{2} \phi-3 \cos ^{2} \phi\right)=0 \quad \rightarrow \quad \rightarrow \quad \tan \phi=\sqrt{3} \\
\rho^{2}=0 \text { or } \sin ^{2} \phi=3 \cos ^{2} \phi \quad \tan \phi=\sqrt{3} \\
\rho=0 \text { included in } \quad \rightarrow \quad
\end{gathered}
$$

