

When you are done with your homework you should be able to...
π Recognize and write equations for cylindrical surfaces
π Recognize and write equations for quadric surfaces
π Recognize and write equations for surfaces of revolution

Warm-up: Find the volume of the region bounded by the graphs $y=4, x=4, x=0$, and $y=0$ which has been rotated about the x-axis. Graph the resulting solid.

DEFINITION OF A CYLINDER
Let C be a curve in a plane and let L be a line not in a parallel plane. The set of all lines parallel to L and intersecting C is called a cylinder. C is called the generating curve (aka directrix) of the cylinder and the parallel lines are called rulings.

EQUATIONS OF CYLINDERS

The equation of a cylinder whose rulings are parallel to one of the coordinate axes contains only the variables corresponding to the other two axes.

Example 1: Sketch the surface represented by each equation.
a) $y=z^{2}$
$x=0$
generating
curve in
$y z$-plane

b) $z=\cos x$
generating curve in $x z$-plane $y=0$

QUADRIC SURFACE

The equation of a quadric surface in space is a second-degree equation of the form

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=0
$$

There are six basic types of quadric surfaces:
Ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, elliptic cone, elliptic paraboloid, and hyperbolic paraboloid.

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
Trace
ellipse
ellipse ellipse

Hyperboloid (1 sheet)

Hyperboloid (2 sheets)

Trace
ellipse // to $x y$-plane hyperbola // to xz-plane hyperbola ll to yz-plane
Elliptic Cone $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$

Trace
Plane

ellipse
hyperbola
"to x-plane hyperbola /1/ to $y z$-plane

$z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$
Trace
Plane
ellipse /" to $x y$-plane
// toxz-plane parabola // to $y z$-plane

Hyperbolic Paraboloid $z=\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}$	Trace	Plane
	hyperbola to $x y$-plane parabola // to $x z-p l a n e ~$	
	parabola // to yz-plane	

Example 2: Identify and sketch the quadric surface.

$$
\begin{aligned}
& \frac{x^{2}}{16}+\frac{y^{2}}{25}+\frac{z^{2}}{25}=1 \\
& y z \text {-plane } y^{2}+z^{2}=5^{2} \\
& x=0, y^{2} \\
& \frac{x z-p l a n e}{4^{2}}+\frac{z^{2}}{5^{2}}=1
\end{aligned}
$$

$x y$-plane

$$
z=0, \frac{x^{2}}{4^{2}}+\frac{y^{2}}{5^{2}}=1
$$

ellipsoid

SURFACE OF REVOLUTION
If the graph of a radius function r is revolved about one of the coordinate axes, the equation of the resulting surface of revolution has one of the following forms:

1. Revolved about the x -axis: $y^{2}+z^{2}=[r(x)]^{2}$
2. Revolved about the y-axis: $x^{2}+z^{2}=[r(y)]^{2}$
3. Revolved about the z-axis: $x^{2}+y^{2}=[r(z)]^{2}$

Example 3: Find an equation for the surface of revolution generated by revolving the curve $z=3 y$ in the $y z$-plane about the y-axis.

Need a function of y since were revolving about the y-axis.

