$$
\begin{array}{l|l|}
\frac{112111}{\text { - Warm up using }} \\
11.4 \text { worksheet } \\
\text { Lecture } 11.4
\end{array}
$$

When you are done with your homework you should be able to...
π Find the cross product of two vectors in space
π Use the triple scalar product of three vectors in space
Warm-up: Find the direction cosines of $\mathbf{u}=5 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and demonstrate that the sum of the squares of the direction cosines is 1 .

$$
\begin{aligned}
& \|\vec{u}\|=\sqrt{25+9+1} \quad \vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle \\
& \|\vec{u}\|=\sqrt{35} \quad \vec{u}=\langle 5,3,-1\rangle \\
& \cos \alpha=\frac{u_{1}}{\|\vec{u}\|}=\frac{5}{\sqrt{35}} \quad \begin{array}{l}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma \stackrel{?}{=} 1 \\
\cos \beta=\frac{u_{2}}{\|\vec{u}\|}=\frac{3}{\sqrt{35}} \quad\left(\frac{5}{\sqrt{35}}\right)^{2}+\left(\frac{3}{\sqrt{35}}\right)^{2}+\left(\frac{-1}{\sqrt{35}}\right)^{2} ? \\
\cos \gamma=\frac{u_{3}}{\|\vec{u}\|}=-\frac{1}{\sqrt{35}}
\end{array} \quad \begin{array}{l}
\frac{25+1}{35} \quad 1
\end{array}
\end{aligned}
$$

DEFINITION OF CROSS PRODUCT OF TWO VECTORS IN SPACE
Let $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ be vectors in space.
The cross product of \mathbf{u} and \mathbf{v} is the vector

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}+\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k} . \\
\vec{u} \times \vec{v} & =\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \hat{\imath}-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \hat{\jmath}+\left|\begin{array}{cc}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \hat{k} \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) \hat{\imath}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \hat{\jmath}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \hat{k}
\end{aligned}
$$

THEOREM: ALGEBRAIC PROPERTIES OF THE CROSS PRODUCT
Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in space and let c be a scalar.

1. $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
3. $c(\mathbf{u} \times \mathbf{v})=(c \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(c \mathbf{v})$
4. $\mathbf{u} \times \mathbf{0}=\mathbf{0} \times \mathbf{u}=\mathbf{0}$
5. $\mathbf{u} \times \mathbf{u}=\mathbf{0}$
6. $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$

THEOREM: GEOMETRIC PROPERTIES OF THE CROSS PRODUCT
Let \mathbf{u} and \mathbf{v} be nonzero vectors in space, and let θ be the angle between \mathbf{u} and \mathbf{v}.

1. $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}.
2. $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$.
3. $\mathbf{u} \times \mathbf{v}=\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} are scalar multiples of each other.
4. $\|\mathbf{u} \times \mathbf{v}\|=$ the area of parallelogram having \mathbf{u} and \mathbf{v} as adjacent sides.

Example 1: Find $\mathbf{u} \times \mathbf{v}$ and show that it is orthogonal to both

$$
\begin{aligned}
& \mathbf{u}=\langle-1,1,2\rangle \text { and } \mathbf{v}=\langle 0,1,0\rangle \text {. } \\
& \left\langle u_{1}, u_{2}, u_{3}\right\rangle=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \\
& \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 1 & -2 \\
+ & - & + \\
0 & & 0
\end{array}\right| \\
& =0-\left|\begin{array}{cc}
\hat{\imath} & \hat{k} \\
-1 & 2
\end{array}\right|+0 \\
& \begin{array}{l}
=-(2 \hat{\imath} \hat{\hat{k}}(-\hat{k})) \\
=-2 \hat{\imath}-7
\end{array} \\
& \vec{u} \cdot(\vec{u} \times \vec{v})=\langle-1,1,2\rangle \cdot\langle-2,0,-1\rangle \\
& =(-1)(-2)+(1)(0)+(2)(-1) \\
& =0 \mathrm{~J} \\
& \vec{v} \cdot(\vec{u} \times \vec{v})=\langle 0,1,0\rangle \cdot\langle-2,0,-1\rangle \\
& =0 \\
& =0 \mathrm{l}
\end{aligned}
$$

In physics, the cross product can be used to measure torque, which is the moment M of a force \mathbf{F} about a point P. If the point of application of the force is Q, the moment of \mathbf{F} about P is given by $\mathbf{M}=\overline{P Q} \times \mathbf{F}$. The magnitude of the moment \mathbf{M} measures the tendency of the vector $\overline{P Q}$ to rotate counterclockwise about an axis directed along the vector M.

Example 2: Both the magnitude and direction of the force on a crankshaft change as the crankshaft rotates. Find the torque on the crankshaft using the position and data shown in the figure.

$$
\overrightarrow{P Q}=.16 \hat{k}
$$

THEOREM: THE TRIPLE SCALAR PRODUCT
Let $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}, \mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, and $\mathbf{w}=w_{1} \mathbf{i}+w_{2} \mathbf{j}+w_{3} \mathbf{k}$,
The triple scalar product is given by

* Volume of a

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right| \begin{aligned}
& \text { parallelepiped with } \\
& \text { vectors } \vec{u}, \vec{v} \text {, and } \vec{w} \text { as } \\
& \text { adjacent by edges is }
\end{aligned}
$$

Example 3: Find $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) . \mathbf{u}=\langle 1,1,1\rangle, \mathbf{v}=\langle 2,1,0\rangle, \mathbf{w}=\langle 0,0,1\rangle . \quad V=|\vec{u} \cdot(\vec{v} \times \vec{w})|$

$$
\begin{aligned}
u \cdot(v \times w) & =\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 0 \\
+ & - & 1 \\
0 & 0 & 1
\end{array}\right| \\
& =0-0+\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right| \cdot 7 \\
& =1-2
\end{aligned}
$$

Example 4: Find the volume of the parallelepiped having adjacent edges

$$
\begin{aligned}
& V=\left|\begin{array}{lll}
++ & 3 & 1 \\
0 & 6 & 6 \\
-4 & 0 & -4
\end{array}\right| \\
& \left.V=\left|\begin{array}{cc}
6 & 6 \\
0-4
\end{array}\right| 1-0+\left|\begin{array}{cc}
31 \\
66
\end{array}\right|(-4) \right\rvert\, \\
& V=|(-24-0)(1)+(18-6)(-4)| \\
& V=|-72| \rightarrow V=72 \text { cubic units }
\end{aligned}
$$

