

When you are done with your homework you should be able to...
π Use properties of the dot product of two vectors
π Find the angle between two vectors using the dot product
π Find the direction cosines of a vector in space
π Find the projection of a vector onto another vector
π Use vectors to find the work done by a constant force
Warm-up: Write the equation of the sphere in standard form. Find the center and the radius

$$
\begin{gathered}
9 x^{2}+9 y^{2}+9 z^{2}-6 x+18 y+1=0 \\
9 x^{2}-6 x+9 y^{2}+18 y=-1 \\
9\left(x^{2}-\frac{2}{3} x+\left(-\frac{1}{3}\right)^{2}\right)+9\left(y^{2}+2 y+(1)^{2}\right)+9 z^{2}=-1+1+9 \\
\frac{9}{9}\left(x-\frac{1}{3}\right)^{2}+\frac{9}{9}(y+1)^{2}+\frac{9}{9} z^{2}=\frac{9}{9} \\
\left(x-\frac{1}{3}\right)^{2}+(y+1)^{2}+z^{2}=1 \\
\begin{array}{l}
\left(\frac{1}{3},-1,0\right)
\end{array} \\
\text { radius: } 1
\end{gathered}
$$

DEFINITION OF DOT PRODUCT (aka inner product aka scalar product)
The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{V}=u_{1} v_{1}+u_{2} v_{2}
$$

The dot product of $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

THEOREM: PROPERTIES OF THE DOT PRODUCT
Let \mathbf{u}, \mathbf{v} and \mathbf{w} be vectors in the plane or in space and let c be a scalar.

1. Commutative Property. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. Distributive Property. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
3. $c(\mathbf{u} \cdot \mathbf{v})=c \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot c \mathbf{v}$
4. $\mathbf{0} \cdot \mathbf{v}=0$
5. $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$

Example 1: Given $\mathbf{u}=\langle-4,6\rangle, \mathbf{v}=\langle 3,7\rangle$ and $\mathbf{w}=\langle 9,-5\rangle$, find each of the following:
a) $\mathbf{u} \cdot \mathbf{w}=(-4)(9)+(6)(-5)$

$$
=[-66]
$$

b) $5 \mathbf{u} \cdot \mathbf{v}$

$$
\begin{aligned}
5 \vec{u} & =5\langle-4,4\rangle \quad \therefore \quad 5 \vec{u} \cdot \vec{v}
\end{aligned}=(-20 \cdot 3)+(30 \cdot 7)
$$

c) $\mathbf{u} \cdot \mathbf{u}$

$$
\langle-4,6\rangle \cdot\langle-4,6\rangle=16+36=52
$$

or $\sqrt{(-4)^{2}+(6)^{2}}=(\sqrt{52})^{2}=(52$
d) $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$

$$
\begin{aligned}
&\langle-4,6\rangle \cdot\langle 3,7\rangle \\
&(-4) 3+(6) 7=30 \\
& 30 \cdot \bar{w}=30\langle 9,-5\rangle=\langle 270,-150\rangle
\end{aligned}
$$

THEOREM: ANGLE BETWEEN TWO VECTORS
If $\theta, 0 \leq \theta \leq \pi$, is the angle between two nonzero vectors \mathbf{u} and \mathbf{v} then

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

$\vec{u} \cdot \vec{v}=\|\vec{u}\|[\|v\| \cos \theta]$ is the scalar component of vector \vec{v} along the direction of vector \vec{u} and
$\vec{u} \cdot \vec{v}=\|\vec{v}\|[\|\vec{u}\| \cos \theta]$ is the scalar component of vector \vec{u} along the direction of vector \vec{v}

Example 2: Find the angle θ between the vectors $\mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$ and $\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}$.

$$
\begin{aligned}
& \cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \mid\|\vec{v}\|} \\
& \cos \theta=\frac{(3)(2)+(2)(-3)+(1)(0)}{\sqrt{(3)^{2}+(2)^{2}+(1)^{2}} \sqrt{(2)^{2}+(-3)^{2}}} \\
& \cos \theta=0 \\
& \theta=\frac{\pi}{2}
\end{aligned}
$$

DEFINITION: ORTHOGONAL VECTORS
The vectors \mathbf{u} and \mathbf{v} are orthogonal if

$$
\mathbf{u} \cdot \mathbf{v}=0
$$

Example 3: Determine whether vectors $\mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and $\mathbf{v}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}$ are orthogonal, parallel or neither.

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=(-2)(2)+(3)(1)+(-1)(-1) \\
& \vec{u} \cdot \vec{v}=0
\end{aligned}
$$

\vec{u} and \vec{v} are orthogonal.

DIRECTION COSINES
For a vector in the plane, we often measure its direction in terms of the
\qquad measured counterclock wise from the \qquad positive \underline{x}-axis to the \qquad vector .

In space, it is more convenient to measure direction in terms of the angles between the nonzero vector \mathbf{v} and the three unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}. The angles α, β and γ are the direction angles of \mathbf{v} and $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosines of \mathbf{v}.

Activity:

1. Use the theorem for the angle between two vectors to find an alternate form of the dot product. Substitute the unit vector \mathbf{i} for vector \mathbf{u}.

$$
\cos \alpha=\frac{\hat{\imath} \cdot \vec{v}}{\|\hat{\imath}\|\|\vec{v}\|} \Rightarrow \cos \alpha=\frac{\hat{\imath} \cdot \vec{v}}{\mid \cdot\|\vec{v}\|} \Rightarrow \hat{\imath} \cdot \vec{v}=\|\vec{v}\| \cos \alpha
$$

2. Now find $\mathbf{v} \cdot \mathbf{i}$ using the component form of each vector.

$$
\begin{aligned}
& \vec{v} \cdot \hat{\imath}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \cdot\langle 1,0,0\rangle \\
& \vec{v} \cdot \hat{\imath}=v_{1}
\end{aligned}
$$

3. Equate your results from parts 1 and 2 and then isolate $\cos \alpha$.

$$
V_{1}=\|\vec{v}\| \cos \alpha \Rightarrow \cos \alpha=\frac{v_{1}}{\|\vec{v}\|}
$$

4. Repeat this exercise to find $\cos \beta$ and $\cos \gamma$.

$$
\cos \beta=\frac{\hat{\jmath} \cdot \vec{v}}{\|\hat{\jmath}\|\|\vec{v}\|}
$$

5. Find the normalized form of any nonzero vector \mathbf{v}, that is, find two expressions for $\frac{\mathbf{v}}{\|\mathbf{v}\|}$, using your previous results.

$$
\frac{\vec{v}}{\|\vec{v}\|}=\frac{v_{1}}{\|\vec{v}\|} \hat{\imath}+\frac{v_{2}}{\|\vec{v}\|} \hat{\jmath}+\frac{v_{3}}{\|\vec{v}\|} \hat{k}
$$

or $\frac{\vec{v}}{\|\vec{\sigma}\|}=\cos \alpha \hat{\imath}+\cos \beta \hat{\jmath}+\cos \gamma \hat{k}$
6. Find $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$. Hint: $\frac{\mathbf{v}}{\|\mathbf{v}\|}$ is a unit vector.

Example 4: Find the direction angles of the vector $\mathbf{u}=-4 \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$.

DEFINITION OF PROJECTION AND VECTOR COMPONENTS
Let \mathbf{u} and \mathbf{v} be nonzero vectors and let $\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}$, where \mathbf{w}_{1} is parallel to \mathbf{v} and \mathbf{w}_{2} is orthogonal to \mathbf{v}.

1. \mathbf{w}_{1} is called the projection of \mathbf{u} onto \mathbf{v} or the vector component of \mathbf{u} along \mathbf{v}, and is denoted by $\mathbf{w}_{1}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
2. $\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1}$ is called the vector component of \mathbf{u} orthogonal to \mathbf{v}.
θ is acute

$\vec{w}_{1}=\operatorname{proj}_{\vec{v}} \vec{u} \rightarrow$ projection of \vec{u} onto \vec{v}
\rightarrow vector component of \vec{u} along \vec{v}
$\vec{w}_{2}=$ vector component of \vec{u} orthogonal to \vec{V}

THEOREM: PROJECTION USING THE DOT PRODUCT
If \mathbf{u} and \mathbf{v} are nonzero vectors, then the projection of \mathbf{u} onto \mathbf{v} is given by

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v}
$$

DEFINITION OF WORK
The work W done by a constant force F as its point of application moves along the vector $\overline{P Q}$ is given by either of the following:

1. $W=\left\|\operatorname{proj}_{\overline{P Q}} \mathbf{F}\right\|\|\overline{P Q}\|$
2. $W=\mathbf{F} \cdot \overline{P Q}$

Example 5: A toy wagon is pulled by exerting a force of 25 pounds on a handle that makes a 20° angle with the horizontal. Find the work done in pulling the wagon 50 feet.

$$
\begin{aligned}
& \vec{F}=25\left(\cos 20^{\circ} \hat{\imath}+\sin 20^{\circ} \hat{\jmath}\right) \\
& W=\vec{F} \cdot \overrightarrow{P Q} \\
& W=25\left(\cos 20^{\circ} \hat{\imath}+\sin 20^{\circ} \hat{\jmath}\right) \cdot 50 \hat{\imath} \\
& W=1250 \cos 20^{\circ}+0
\end{aligned}
$$

$$
\overrightarrow{P Q}=50 \hat{\imath}
$$

$$
w \doteq 1174.6 \mathrm{ft}-16 s
$$

