Monday Wednesday

(11.2 worksheet) HOLIDAY 11.3

· lecture 11.2

When you are done with your homework you should be able to...

- π Understand the three-dimensional rectangular coordinate system
- π Analyze vectors in space
- π Use three-dimensional vectors to solve real-life problems

Warm-up: Find the vector v with magnitude 4 and the same direction as $\mathbf{u} = \langle -1, 1 \rangle.$

need to make it unit vector

$$\frac{\vec{u}}{||\vec{u}||} = \frac{\langle -1, 1 \rangle}{\sqrt{(-1)^2 + (1)^2}} = \frac{1}{\sqrt{2}} \langle -1, 1 \rangle$$

(2) Find \vec{V} : $\vec{V} = 4\left(\frac{1}{12}\left(-1,1\right)\right) = \left(2\sqrt{2}\left(-1,1\right)\right)$

Constructing a three-dimensional coordinate system:

A (1,2,3) B(-2,3,6)

- Taken as pairs, the axes determine three coordinate planes: the xyplane, the xz-plane, and the yz-plane
 - \circ These planes separate the three-space into $___\S$ octants
- In this three-dimensional system, a point P in space is determined by and ordered triple, denoted (x,y, 2
 - \circ x = directed distance from yz-plane to P
 - o y = directed distance from xz-plane to P
 - o z = directed distance from xy-plane to P

- A three-dimensional coordinate system can either have a left-handed or right-handed orientation
 - \circ The right-handed system has the right hand pointing along the x-axis
 - Our text uses the right-handed system

Example 1: Draw a three-dimensional coordinate system and plot the following points: A(1, 0, 4), B(-2, 3, 1) and C(-2, -1, -4)

THE DISTANCE BETWEEN TWO POINTS IN SPACE

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example 2: Find the standard equation of the sphere that has the points (0, 1, 3) and (-2, 4, 2) as endpoints of a diameter.

Standard equation of a sphere
$$(\chi - \chi_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$$

$$d = (-2 - 0)^2 + (4 - 1)^2 + (2 - 3)^2$$

$$d = \sqrt{14} \rightarrow r = \sqrt{14}$$

MATH 252/GRACEY 11.2

midpoint:
$$\left(\frac{x_1+x_2}{2^2}, \frac{y_1+y_2}{2^2}, \frac{z_1+z_2}{2^2}\right)$$

Curver: $\left(\frac{0+(-2)}{2}, \frac{1+y}{2}, \frac{3+2}{2}\right) = \left(-1, \frac{5}{2}, \frac{5}{2}\right)$
of sphere
$$\left(\frac{x_1-(-1)}{2} + \left(y-\frac{5}{2}\right)^2 + \left(z-\frac{5}{2}\right)^2 = \left(\frac{1+y}{2}\right)^2$$

$$\left(\frac{x+1}{2}\right)^2 + \left(y-\frac{5}{2}\right)^2 + \left(z-\frac{5}{2}\right)^2 = \frac{1}{2}$$

DEFINITIONS OF VECTOR ADDITION AND SCALAR MULTIPLICATION

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be vectors in space and let c be a scalar.

- 1. Equality of Vectors. $\mathbf{u} = \mathbf{v}$ if and only if $u_1 = v_1$, $u_2 = v_2$, and $u_3 = v_3$.
- 2. Component Form. If ${\bf v}$ is represented by the directed line segment from $P\left(p_1,p_2,p_3\right)$ to $Q\left(q_1,q_2,q_3\right)$, then ${\bf v}=\left\langle v_1,v_2,v_3\right\rangle = \left\langle q_1-p_1,q_2-p_2,q_3-p_3\right\rangle$
- 3. Length. $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$ is the vector $\mathbf{v} = (-1)\mathbf{v} = (-1)\mathbf{v$
- 4. Unit Vector in the Direction of \mathbf{v} . $\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{1}{\|\mathbf{v}\|} \langle v_1, v_2, v_3 \rangle, \ \mathbf{v} \neq \mathbf{0}$
- 5. *Vector Addition.* $\mathbf{v} + \mathbf{u} = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle$
- 6. Scalar Multiplication. $c\mathbf{v} = \langle cv_1, cv_2, cv_3 \rangle$

Example 3: Find the component form of the vector \mathbf{v} that has initial point (-1, 6, 4) and terminal point (0, -5, 3). Find a unit vector in the direction of

v.
$$\vec{V} = \langle 0 - (-1), -5 - 6, 3 - 4 \rangle$$

$$\vec{V} = \langle 1, -11, -1 \rangle$$

DEFINITION: PARALLEL VECTORS

Two nonzero vectors \mathbf{u} and \mathbf{v} are parallel if there is some scalar c such that

$$\mathbf{u} = c\mathbf{v}$$
.

Example 4: Vector z has initial point (5, 4, 1) and terminal point (-2, -4, 4). Determine which of the vectors is parallel to z. $\ngeq = (-2-5, -4-4, 4-1)$

a) $\langle 7,6,2 \rangle$

로= <-7,-8,3>

not parallel

b) $\langle 14,16,-6 \rangle = -2 \langle -7,-8,3 \rangle$

Example 5: Find the component form of the unit vector ${\bf v}$ in the direction of the diagonal of the cube shown in the figure.