1/14/11 - Warm-up (11.2 worksheet) - Lecture 11.2	Honday	Wedneoday

When you are done with your homework you should be able to...
π Understand the three-dimensional rectangular coordinate system
π Analyze vectors in space
π Use three-dimensional vectors to solve real-life problems
Warm-up: Find the vector \mathbf{v} with magnitude 4 and the same direction as

$$
\mathbf{u}=\langle-1,1\rangle
$$

(1) need to make \vec{u} un it vector

$$
\frac{\vec{u}}{\|\vec{u}\|}=\frac{\langle-1,1\rangle}{\sqrt{(-1)^{2}+(1)^{2}}}=\frac{1}{\sqrt{2}}\langle-1,1\rangle
$$

(2) Find $\vec{v}: \vec{v}=4\left(\frac{1}{\sqrt{2}}\langle-1,1\rangle\right)=2 \sqrt{2}\langle-1,1\rangle$

Constructing a three-dimensional coordinate system:

$$
\begin{aligned}
& A(1,2,3) \\
& B(-2,3,6)
\end{aligned}
$$

- Taken as pairs, the axes determine three coordinate planes: the $x y$ plane, the $x z$-plane, and the $y z$-plane
- These planes separate the three-space into \qquad octants
- In this three-dimensional system, a point P in space is determined by anil ordered \qquad triple , denoted \qquad $(x, y, z)$$x=$ directed distance from $y z$-plane to $P$$y=$ directed distance from $x z$-plane to $P$$z=$ directed distance from $x y$-plane to P
- A three-dimensional coordinate system can either have a left-handed or right-handed orientation
- The right-handed system has the right hand pointing along the x axis
- Our text uses the right-handed system

Example 1: Draw a three-dimensional coordinate system and plot the following points: $A(1,0,4), B(-2,3,1)$ and $C(-2,-1,-4)$

THE DISTANCE BETWEEN TWO POINTS IN SPACE

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Example 2: Find the standard equation of the sphere that has the points $(0,1,3)$ and $(-2,4,2)$ as endpoints of a diameter.

$$
\left(x_{0}, y_{0}, z_{0}\right)
$$ is the center of the spier ere

standard equation of a sphere

$$
\begin{aligned}
& \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2} \\
& d=\sqrt{(-2-0)^{2}+(4-1)^{2}+(2-3)^{2}} \\
& d=\sqrt{14} \rightarrow r=\frac{\sqrt{14}}{2}
\end{aligned}
$$

midpoint: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$
center: $\left(\frac{0+(-2)}{2}, \frac{1+4}{2}, \frac{3+2}{2}\right)=\left(-1, \frac{5}{2}, \frac{5}{2}\right)$ of sphere

$$
\begin{aligned}
& (x-(-1))^{2}+\left(y-\frac{5}{2}\right)^{2}+\left(z-\frac{5}{2}\right)^{2}=\left(\frac{\sqrt{14}}{2}\right)^{2} \\
& (x+1)^{2}+\left(y-\frac{5}{2}\right)^{2}+\left(z-\frac{5}{2}\right)^{2}=\frac{7}{2}
\end{aligned}
$$

DEFINITIONS OF VECTOR ADDITION AND SCALAR MULTIPLICATION

Let $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors in space and let c be a scalar.

1. Equality of Vectors. $\mathbf{u}=\mathbf{v}$ if and only if $u_{1}=v_{1}, u_{2}=v_{2}$, and $u_{3}=v_{3}$.
2. Component Form. If \mathbf{v} is represented by the directed line segment from $P\left(p_{1}, p_{2}, p_{3}\right)$ to $Q\left(q_{1}, q_{2}, q_{3}\right)$, then $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle q_{1}-p_{1}, q_{2}-p_{2}, q_{3}-p_{3}\right\rangle$
3. Length. $\|\mathbf{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$ is the vector $\left.v=(-1)-1-r_{2}\right\rangle$.
4. Unit Vector in the Direction of \mathbf{v}. $\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{1}{\|\mathbf{v}\|}\left\langle v_{1}, v_{2}, v_{3}\right\rangle, \mathbf{v} \neq \mathbf{0}$
5. Vector Addition. $\mathbf{v}+\mathbf{u}=\left\langle v_{1}+u_{1}, v_{2}+u_{2}, v_{3}+u_{3}\right\rangle$
6. Scalar Multiplication. $c \mathbf{v}=\left\langle c v_{1}, c v_{2}, c v_{3}\right\rangle$

Example 3: Find the component form of the vector \mathbf{v} that has initial point $(-1,6,4)$ and terminal point $(0,-5,3)$. Find a unit vector in the direction of

$$
\begin{aligned}
& \vec{v}=\langle 0-(-1),-5-6,3-4\rangle \\
& \vec{v}=\langle 1,-11,-1\rangle \\
& \frac{\vec{v}}{\|\vec{v}\|}=\frac{\langle 1,-11,-1\rangle}{\sqrt{(1)^{2}+(-1)^{2}+(-1)^{2}}}
\end{aligned}
$$

DEFINITION: PARALLEL VECTORS
Two nonzero vectors \mathbf{u} and \mathbf{v} are parallel if there is some scalar c such that

$$
\mathbf{u}=c \mathbf{v}
$$

Example 4: Vector z has initial point $(5,4,1)$ and terminal point $(-2,-4,4)$. Determine which of the vectors is parallel to $\mathrm{z} . \quad \vec{z}=\langle-2-5,-4-4,4-1\rangle$
a) $\langle 7,6,2\rangle$

$$
\vec{z}=\langle-7,-8,3\rangle
$$

b) $\langle 14,16,-6\rangle=-2\langle-7,-8,3\rangle$
parallel

Example 5: Find the component form of the unit vector \mathbf{v} in the direction of the diagonal of the cube shown in the figure.

