Definition of Power series

If x is a variable, then the infinite series
$\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{n} x^{n}+\cdots$ is called a power series.
More generally, an infinite series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+a_{n}(x-c)^{n}+\cdots
$$

is called a power series centered at c, where c is a constant.

1. State where the power series is centered.

$$
\text { a. } \sum_{n=0}^{\infty} \frac{(x+2)^{n}}{n!} \frac{a_{n}=\frac{1}{n!}}{(x-(-2))^{n}} \quad \text { b. } \sum_{n=2}^{\infty} \frac{(n-5)^{n} x^{n}}{\ln n}
$$

Convergence of a Power Series
For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.
2. There exists a real number $R>0$ such that the series converges absolutely for $|x-c|<R$ and diverges for $|x-c|>R$.
3. The series converges absolutely for all x.

The number R is the radius of convergence of the power series. If the series converges only at c, the radius of convergence is $R=0$. If the series converges for all x, the radius of convergence is $R=\infty$. The set of all values of x for which the series converges is the interval of convergence of the power series.
2. Find the radius of convergence of the power series.

- $\sum_{n=0}^{n}(2 x)^{n}$

Geometric, so $|2 x|=r$ and when $|r|<1$ the series converges.

$$
|2 x|<1 \rightarrow|2| \cdot|x|<1 \rightarrow|x|<\frac{1}{2}=R
$$

radius of convergence is $\frac{1}{2}$
$2(p+1)$ b. $\sum_{n=0}^{\infty} \frac{(2 n!}{n}$

$$
\rightarrow \left\lvert\, \frac{2\left((n + 1) \sum _ { n = 0 } ^ { \text { b. } } \frac { (n + 2) (2 n + 1) (2 n) ! x ^ { 2 n + 2 - 2 n } n ! } { (n + 1) (n !) (2 n) ! } \left|=\left|2(2 n+1) x^{2}\right|\right.\right.}{\text { so } \lim _{n \rightarrow \infty}\left|2(2 n+1) x^{2}\right|=\infty}\right.
$$

So $x=0$ for convergence and radius of convergEndpoint Convergence ence is zero.

Note that for a power series whose radius of convergence is a finite number R, each endpoint must be tested separately for convergence or divergence. The interval of convergence of a power series can take any one of the six forms below.

Radius: 0

Radius: Infinity

Radius: $R-I$ showed you one possibility, now
you complete the rest!

3. Find the interval of convergence of the power series. Be sure to include a check for endpoint convergence at the endpoints of the interval.
a. $\sum_{n=0}^{\infty}(-1)^{n+1}(n+1) x^{n}$
b. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{(n+1)(n+2)}$

$$
\begin{aligned}
& 1 \times k p \\
& -p<x<p \\
& \text { c. } \sum_{n=1}^{\infty} \frac{(x-3)^{n-1}}{3^{n-1}} \\
& \begin{aligned}
& \frac{(x-3)^{(n+1)-1}}{3^{(n+1)-1}} \cdot \frac{3^{n-1}}{(x-3)^{n-1}}\left|=\left|(x-3)^{n-(n-1)} \cdot 3^{n-1-n}\right|\right. \\
&=\left|\frac{(x-3)^{1}}{3}\right| \begin{array}{ll}
1>50 & -1<\frac{x-3}{3}<1 \\
-3<x-3<3 \\
\text { inter val ofconvergence: } 0<x<6
\end{array}
\end{aligned}
\end{aligned}
$$

Endpoints:

$$
\begin{aligned}
\frac{\text { At } x=0}{\sum_{n=1}^{\infty} \frac{(x-3)^{n-1}}{3^{n-1}}} & =\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{3^{n-1}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 3^{n-1}}{3^{n}{ }^{1}} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(-1)} \\
& =-\sum_{n=1}^{\infty}(-1)^{n}
\end{aligned}
$$

\rightarrow Divergent geometric

$$
\frac{\text { At } x=6}{\sum_{n=1}^{\infty} \frac{3^{n-1}}{3^{n-1}}}=\sum_{n=1}^{\infty} 1
$$

nth term test:

$$
\lim _{n \rightarrow \infty} 1=1 \neq 0
$$

Diverges by the nth term test

$$
\text { So... } \sum_{n=1}^{\infty} \frac{(x-3)^{n-1}}{3^{n-1}} \quad \text { on } \quad \text { on verges }(0,6)
$$

series $[|r|=|-1|=1 \geq 1]$

