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Definition of Power series 

If x is a variable, then the infinite series 
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 is called a power series. 

More generally, an infinite series of the form 
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is called a power series centered at c, where c is a constant. 

1. State where the power series is centered. 
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Convergence of a Power Series 

For a power series centered at c, precisely one of the following is true. 

1. The series converges only at c. 

2. There exists a real number 0R >  such that the series converges absolutely 

for x c R− <  and diverges for .x c R− >  

3. The series converges absolutely for all x. 

The number R is the radius of convergence of the power series. If the series 

converges only at c, the radius of convergence is 0.R =  If the series converges 

for all x, the radius of convergence is .R = ∞  The set of all values of x for 

which the series converges is the interval of convergence of the power series. 
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2. Find the radius of convergence of the power series. 
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Endpoint Convergence 

Note that for a power series whose radius of convergence is a finite number R, 

each endpoint must be tested separately for convergence or divergence. The 

interval of convergence of a power series can take any one of the six forms below. 

Radius: 0                                           Radius: R—I showed you one possibility, now  

                                                                          you complete the rest! 

 

Radius: Infinity 
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3. Find the interval of convergence of the power series. Be sure to include a 

check for endpoint convergence at the endpoints of the interval. 
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