Theorem 9.12 Direct Comparison Test
Let $0<a_{n} \leq b_{n}$ for all n.

1. If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
2. If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.

Steps for using the Direct Comparison Test.

1. Decide if you think the series will converge or diverge. Then use a similar series for which it is easy to establish convergence or divergence which has terms which are
a. Greater for all n in a term by term comparison with the given series if you want to prove convergence and
b. Lesser for all n in a term by term comparison with the given series if you want to prove divergence.
2. Show that the similar series converges or diverges.
3. State your conclusion in words stating the reason for convergence or divergence.
4. Use the Direct Comparison Test to determine the convergence or divergence of the series. n thtermtest:
a $\sum^{\infty} \frac{1}{\lim _{n \rightarrow \infty} \frac{1}{3 n^{2}+2}=0,1}$
(1) Choose $\sum_{n=1}^{\infty} \frac{1}{3 n^{2}}$ as comparison series
conditions:
need to show that $\frac{1}{3 n^{2}}>\frac{1}{3 n^{2}+2}$ $n=1: \frac{1}{3} \xlongequal[>]{>} \frac{1}{5}$ yes
$n=2: \frac{1}{12}>\frac{1}{14}$ yes
(2)

$$
\sum_{n=1}^{\infty} \frac{1}{3 n^{2}}=\frac{1}{3} \sum_{n=1}^{\frac{1}{n^{2}}} \text { is a }
$$

convergent p-series $[p=2>1]$
(3) $\sum_{n=1}^{\infty} \frac{1}{3 n^{2}+2}$ converges by the $D C T$.
b. $\sum_{n=1}^{\infty} \frac{4^{n}}{3^{n}-1}$
(1) Choose $\sum\left(\frac{4}{3}\right)^{n}$ as comparison
conditerive"
condition show that $\left(\frac{4}{3}\right)^{n}<\frac{4^{n}}{3^{n}-1}$
$n=1: \frac{4}{3} \stackrel{?}{<} \frac{4}{2}$ yes
$n=2: \frac{16}{9}<\frac{16}{8}$ yes
(2) $\sum_{n=1}^{\infty}\left(\frac{4}{3}\right)^{n}$ is a divergent geometric series

$$
\left[r=\frac{4}{3} \geq 1\right] .
$$

(3) $\sum_{n=1}^{\infty} \frac{4^{n}}{3^{n}-1}$ diverges by the DIT.
$\begin{aligned} & n \text {th term: } \\ & \text { test } \\ & \text { todive }\end{aligned} \lim _{n \rightarrow \infty} \frac{1}{4 n^{1 / 3}-1}=0$ so more work!
c. $\sum_{n=1}^{\infty} \frac{1}{4 \sqrt[3]{n}-1}$ for div.
(1) Chose $\sum_{n=1}^{\infty} \frac{1}{4 n^{1 / 3}}$ as comparison series
(2) $\sum_{n=1}^{\infty} \frac{1}{4 n^{1 / 3}}=\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{1 / 3 / 3}$ is a
conditions:
show $\frac{1}{4_{n}^{1 / 3}}<\frac{1}{4_{n}^{1 / 3}-1}$
(3) $\sum_{n=1}^{\infty} \frac{1}{4 \sqrt[3]{n}-1}$ diverges by the DCT

$$
\begin{aligned}
& n=1: \frac{1}{4} ? \frac{1}{3} \text { yes } \\
& n=8 \quad \frac{1}{8} ? \frac{1}{7} \text { yes }
\end{aligned}
$$

Theorem 9.12 Limit Comparison Test $a_{n}>0, b_{n}>0$, and

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=L
$$

where L is finite and positive. Then the two series either both converge or both diverge.

Steps for using the Limit Comparison Test.

1. Decide if you think the series will converge or diverge. Then use a similar series for which it is easy to establish convergence or divergence.
2. Evaluate the limit of the ratio of the sequence in the given series to the sequence in the similar series.
3. State your conclusion in words stating the reason for convergence or divergence.
4. Use the Limit Comparison Test to determine the convergence or divergence series. nthtermtest for div: $\lim _{n \rightarrow \infty} \frac{2}{3^{n}-1}=0$ so more work!
a. $\sum_{n=1}^{\infty} \frac{2}{3^{n}-1}$
(1) Choose $\sum_{n=1}^{\infty} \frac{2}{3^{n}}$ as comparison series

$$
\begin{aligned}
& \frac{2}{3^{n}}>0, \text { for } n \geq 1 \\
& \frac{2}{3^{n}-1}>0 \text { for } n \geq 1
\end{aligned}>
$$

$$
\text { (2) } \begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{2}{3^{n}}}{\frac{2}{3^{n}-1}} & =\lim _{n \rightarrow \infty} \frac{\frac{3^{n}-1 / 3^{n}}{3^{n}}}{\frac{3}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1-\frac{1}{3^{n}}}{1}
\end{aligned}
$$

condition
$=1$, which is finite and positive]
is a convergent geometric series
(b) $\left[|r|=\frac{1}{3}, 0<\frac{1}{3}<1\right]$ $\sum_{n=1}^{\infty} \frac{2}{3^{n}-1}$ converges by the LCT
b. $\quad \sum_{n=2}^{\infty} \frac{1}{n\left(n^{2}-1\right)}=\sum_{n=1}^{\infty} \frac{1}{n^{3}-n}$
b) $\sum_{n=2}^{\infty} \frac{1}{n^{3}}$ is convergent
(1) Choose $\sum_{n=2}^{\infty} \frac{1}{n^{3}}$ as comparison series
$p-$ series $[p=3>1]$

$$
\begin{gathered}
\frac{1}{n^{3}}>0, n \geq 2 \\
\frac{1}{n^{3}-n}>0, n \geq 2
\end{gathered}
$$

conditions
(a) $\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{3}}}{\frac{1}{n^{3}-n}}=\lim _{n \rightarrow \infty} \frac{\frac{w^{3} n^{5} n / n^{3}}{n^{3}}}{\frac{n^{3}}{n^{3}}}$

$$
=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{n^{2}}}{1}
$$

$=1$, finite and positive
c. $\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{3 n^{5}+2 n+1}$
(1)Choose $\sum_{n=1}^{\infty} \frac{2 n^{2}}{3 n^{5}}=\sum_{n=1}^{\infty} \frac{2}{3 n^{3}}$ as comparison series

$$
\begin{aligned}
& \frac{2}{3 n^{3}}>0, n \geq 1 \\
& \frac{2 n^{2}-1}{3 n^{5}+2 n+1}>0, n \geq 1
\end{aligned}
$$

(2) $a)$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{2}{3 n^{3}}}{\frac{2 n^{2}-1}{3 n^{5}+2 n+1}} & =\lim _{n \rightarrow \infty} \frac{2\left(3 n^{5}+2 n+1\right)}{3 n^{3}\left(2 n^{2}-1\right)} \\
& =\lim _{n \rightarrow \infty} \frac{6 n^{5}+4 n+2}{6 n^{5}-3 n^{3}} \\
& =1, \text { finite and positive }
\end{aligned}
$$

b) $\sum_{n=1}^{\infty} \frac{2}{3 n^{3}}=\frac{2}{3} \sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a
convergent p-series $[\rho=3>1]$
(3)

$$
\sum_{n=1}^{\infty} \frac{2 n^{2}-1}{3 n^{5}+2 n+1} \text { converges }
$$

by the LCT

