4/13/11 - Finish 9.1 Lecture 9.2	Friday 9.3 -Integral test

$$
\text { Remember, }\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\}
$$

A series sums the terms of a sequence.

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots
$$

A sequence of partial ours n de noted by

$$
\left\{S_{a_{1}}\right\}=\underbrace{\left\{S_{1}\right.}_{a_{1}+a_{2}}, \underbrace{S_{3}}_{a_{1}+a_{2}+a_{3}}, \underbrace{S_{3}}_{a_{1}+a_{2}+a_{2}+\cdots+a_{n}}
$$

Definitions of Convergent and Divergent Sines For the infinite series $\sum_{n=1}^{\infty} a_{n}$, the nth partial sum is given by

$$
S_{n}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

If the sequence of partial sums $\left\{S_{n}\right\}$ converges S, then the series $\sum_{i=1}^{\infty} a_{n}$ converges. The limit S is called the sum of the series.

$$
\begin{aligned}
& S_{f}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}+\cdots \\
& I f\left\{S_{n}\right\} \text { diverges, then the series diverges. }
\end{aligned}
$$

1. Find the first 5 terms of the sequence of partial sums.

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=a_{1}+a_{2}=1+\frac{1}{2}=\frac{3}{2} \\
& S_{3}=a_{1}+a_{2}+a_{3}=\frac{3}{2}+\frac{1}{4}=\frac{7}{4} \\
& S_{4}=a_{1}+a_{2}+a_{3}+a_{4}=\frac{7}{4}+\frac{1}{8}=\frac{15}{8}
\end{aligned}
$$

b. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} \quad S_{1}=1$

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=-\frac{1}{2} \\
& a_{3}=\frac{1}{6} \\
& a_{4}=-\frac{1}{24}
\end{aligned}
$$

$$
a_{s}=\frac{1}{120}
$$

$$
\begin{aligned}
& S_{2}=1+\left(-\frac{1}{2}\right)=\frac{1}{2} \\
& S_{3}=\frac{1}{2}+\frac{1}{6}=\frac{2}{3} \\
& S_{4}=\frac{2}{3}+\left(-\frac{1}{24}\right)=\frac{15}{24} \\
& S_{5}=\frac{15}{24}+\frac{1}{120}=\frac{76}{120}=\frac{19}{30}
\end{aligned}
$$

$$
\left\{S_{5}\right\}=\left\{1, \frac{1}{2}, \frac{2}{3}, \frac{15}{24}, \frac{19}{30}\right\}
$$

2. Graph the first 10 terms of the sequence of partial sums given by $\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}$ by hand and then check your result using a graphing calculator.
3. Verify that the infinite series converges.

$$
\begin{aligned}
& \frac{1}{n(n+2)}=\frac{A}{n}+\frac{B}{n+2}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right) \\
& 1=A n+2 A+B n \\
& \left.+\left(1-\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\ldots\right]
\end{aligned}
$$

$$
0 n+1=(A+B) n+2 A
$$

$$
\left.\begin{array}{rl}
A+B & =0 \\
2 A & =1
\end{array}\right\}
$$

As we approach infinity, all terms will zero out except for the sum $1+\frac{1}{2}$. So $S=\frac{1}{2}\left(\frac{3}{2}\right)=\frac{3}{4}$

$$
A=\frac{1}{2}, B=-\frac{1}{2}
$$

Telescoping Series

$$
\begin{aligned}
& \left(b_{1}-b_{2}\right)+\left(b_{2}-b_{3}\right)+\left(b_{3}-b_{4}\right)+\cdots \\
& S=b_{1}-\lim _{n \rightarrow \infty} b_{n+1}
\end{aligned}
$$

b. $\sum_{n=1}^{\infty} 2\left(-\frac{1}{2}\right)^{n}$
4. Find the sum of the convergent series.
a. $8+6+\frac{9}{2}+\frac{27}{8}+\cdots$
b. $\sum_{n=1}^{\infty}\left[(0.7)^{n}+(0.9)^{n}\right]$
5. Write the repeating decimal $0 . \overline{9}$ as a geometric series and write its sum as the ratio of two integers.
6. Determine the convergence or divergence of the series.
a. $\sum_{n=1}^{\infty} \frac{n+1}{2 n-1}$
b. $\sum_{n=1}^{\infty} \ln \frac{1}{n}$
c. $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{3}}$
d. $a_{n}=\left(-\frac{2}{3}\right)^{n}$
e. $a_{n}=n e^{-n / 2}$
7. Use the Bounded Monotonic Sequences theorem to show that the sequence with the given nth term converges and use a graphing calculator to graph the first 10 terms of the sequence and find its limit.

$$
a_{n}=4+\frac{1}{2^{n}}
$$

