4/11/11
Vectore 9.1
Sequences
General form is
$$a_n = \text{Some sequence defined}$$

with the variable in
subscript as the input
Domain of a sequence usually starts with 1, and is an integr
Domain: $\{21,2,3,...,3$ or $\{2n\} \in \mathbb{Z}^+\}$
Range can be all real numbers. It depends on how the
sequence is defined.
 $\{a_n\} = \{a_1, a_2, a_3, ..., a_n, ...\}$
Factorials \rightarrow product of decreasing factors
 $n! = n(n-1)(n-2)\cdots(2)(1)$
 $5! = 5\cdot4\cdot3\cdot2\cdot1$
 $n! = n! (a-1)! = [n]$
 $(n-1)! = [a+1]! = [5]$
 $(2n)! (2n)! (2n+2)!$
 $(2n)! (2n+2)!$
 $(2n)! (2n+2)!$

Since a, is bounded and monotonic, it converges

Definition of a bounded sequence
① A sequence {a, 3 is bounded above if there's a real number Msuch that a, ≤ M for all n. The number Miscalled the upper bound of the sequence.
② A sequence {a, 3 is bounded below if there's a real number N such that N≤a, for all n. The number N is called the lover bound of the sequence.
③ A sequence is bounded if it is bounded above and bounded

below.

Limit of a Sequence Let L be a real number. The limit of a sequence $\{2a,3\}$ is L, Written $\lim_{n \to \infty} a_n = L$ if for each $\epsilon > 0$ there exists M > 0 $n \to \infty$ Such that $|a_n - L| < \epsilon$ whenever n > M. If the limit L of a sequence does exist, then the sequence converges to L. If the limit of a sequence does not exist, then the sequence diverges.

Theorem: Limit of a sequence
Let L be a real number. Let f be a function of a real
variable such that
$$\lim_{\chi \to \infty} f(x) = L$$
.
If $\sum_{n=1}^{\infty} x_n^n = \sum_{n=1}^{\infty} x_n^n = 1$

Theorem: Absolute value theorem
For the sequence
$$\{a_n\}, if$$

 $\lim_{n \to \infty} |a_n| = 0$ then $\lim_{n \to \infty} a_n = 0$

MATH 251/GRACEY

۱D

1. Write the first 5 terms of the sequence. a. $a_n = \frac{3^n}{n!}$ $a_n = \frac{3^n}{n!} = \frac{3^n$ b. $a_n = \frac{2n}{n+3}$ $a_1 = \frac{2}{4} = \frac{2}{2}$ $a_2 = \frac{2}{5}$ $a_3 = \frac{2}{6} = 1$ $a_4 = \frac{8}{5}$ $a_5 = \frac{10}{8} = \frac{5}{4}$ {2as3= {2, 4, 1, 4, 5, 5} 2. Graph the first 10 terms of the sequence $a_n = 2 - \frac{4}{n}$ by hand and then check your result using a graphing calculator. $a_n \mid (n, a_n)$ η $\begin{array}{c|c} -2 & (1,-2) \\ 0 & (2,0) \\ 2/3 & 57 & (3,2/3) \\ 1 & (4,1) \\ 6/5 & 1.2 & (5,6/5) \\ 4/3 & 1.33 & (6,4/3) \\ 10/7 & 1.4 & (7,10/7) \\ 3/2 & 1.5 & (8,3/2) \\ 14/9 & 1.55 & (9,14/9) \\ 8/5 & 1.6 & (0,8/5) \end{array}$ 1 23456789 10 12

MATH 251/GRACEY

3. Simplify the ratio of factorials.

4. Determine the convergence or divergence of the sequence with the given *n*th term. If the sequence converges, find its limit.

a.
$$a_n = 1 + (-1)^n$$

 $a_1 = 0$
 $a_2 = 2$
 $a_3 = 0$
 b_1
 $a_n = \frac{3\sqrt{n}}{\sqrt[3]{n+1}}$
 b_2
 $a_n = \frac{3\sqrt{n}}{\sqrt[3]{n+1}}$
 a_n diverge0.
 $f(n) = a_n$ for all
 $f(n) =$

9.1

$$a_n = \frac{\cos \pi n}{n^2}$$

$$e_{n} a_{n} = \frac{\ln \sqrt{n}}{n}$$

5. Determine whether the sequence with the given *n*th term is monotonic. Discuss the boundedness of the sequence.

b.
$$a_n = \left(-\frac{2}{3}\right)^n$$

c.
$$a_n = ne^{-n/2}$$

6. Use the Bounded Monotonic Sequences theorem to show that the sequence with the given *n*th term converges and use a graphing calculator to graph the first 10 terms of the sequence and find its limit.

$$a_{n} = 4 + \frac{1}{2^{n}}$$
(1) non increasing (see graph)
(2) Bounds
(3) Lower bound at 4 (1) (4+27) = 4+0 = 1
(4) Bounds
(4) Lower bound at 4 (1) (4+27) = 4+0 = 1
(4) Lower bound at 4 (1) (4+27) = 4+0 = 1
(4) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 4 (1) (4+27) = 4+0 = 1
(5) Lower bound at 92
(6) Lower bound at 92
(7) Lower bound at