$4 / 11 / 11$ - lecture 9.1 sequences	Wednesday 9.2	Friday 9.3
Exams not ready maybe not til after spring break		

Sequences
$G e n e r a l ~ f o r m$ is $a_{n}=$ some sequence defined with the variable in subscript as the input
Domain of a sequence usually starts with 1 , and is an integer Domain: $\{1,2,3, \ldots\}$ or $\left\{n \mid n \in \mathbb{Z}^{+}\right\}$
Range can be all real numbers. It depends on how the sequence is defined.
$\left\{a_{n}\right\}$ represents all possible outputs \rightarrow known as terms

$$
\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right\}
$$

Factorials \rightarrow product of decreasing factors

$$
\begin{array}{l|l}
\begin{array}{l}
n!=n(n-1)(n-2) \cdots(2)(1) \\
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1
\end{array} & \frac{(2 n)!}{[2(n+1)]!(2 n+2)!}=\frac{(2 n)!}{(n-1)!}=\frac{n \cdot(n+1)!}{(n)!}=n \\
\frac{n!}{(n)!} & \\
\text { consider } \frac{5!}{(5-1)!}=\frac{5!}{4!}=\frac{5 \cdot 4!}{4!}=5 & =\frac{(2 n)!!}{(2 n+2)(2 n+1)(2 n)!} \\
& =\frac{1}{1}
\end{array}
$$

$$
n=5
$$

$$
\left.\begin{array}{rl}
\frac{10!}{[2(6)]!} & =\frac{10!}{12!} \\
& =\frac{18!}{12 \cdot 11 \cdot 18!}
\end{array}\right\}^{\infty}=\frac{1}{12 \cdot 11}
$$

Graph the first 5 point of the Sequence $a_{n}=\frac{3^{n}}{n!}$

Definition
A sequence $\left\{a_{n}\right\}$ is monotonic if its terms are nondecreawing

$$
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots
$$

Bounded below at I Bounded above at
or if its terms are nonincreasing

$$
\left\{\begin{array}{cl}
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \ldots \\
& \text { check } a_{6} \text { and } a_{7} \\
\cdots & a_{6}=\frac{3(6)}{(6)+2}=\frac{18}{8}=\frac{9}{4} \quad \text { is } \frac{9}{4} \leq \frac{7}{3} \\
a_{n}=\frac{3 n}{n+2} & a_{7}=\frac{3(7)}{(7)+2}=\frac{21}{9}=\frac{7}{3} \quad \frac{27}{12} \leq \frac{29}{12}
\end{array}\right.
$$

$$
\lim _{n \rightarrow \infty} \frac{3 n}{n+2}=3 . \text { so } a_{n}
$$ is bounded

$$
\begin{aligned}
& 5 \text { bounded } \\
& a_{n}=\frac{3 n}{n+2} \text { has }
\end{aligned}
$$

nondecreasing terms, so it is monotonic
Since an is bounded and monotonic, it converges
and

Definition of a bounded sequence
(1) A sequence $\left\{a_{n}\right\}$ is bounded above if there's a real number M such that $a_{n} \leq M$ for all n. The number Miscalled the of the sequence.
(2) A sequence $\left\{a_{n}\right\}$ is bounded below if there's a real number N such that $N \leq a_{n}$ for all n. The number N is called the lower bound of the sequence.
(3) A sequence is bounded if it is bounded above and bounded below.
Limit of a Sequence
Let L be a real number. The limit of a sequence $\left\{a_{n}\right\}$ is L, written $\lim _{n \rightarrow \infty} a_{n}=L$ if for each $\varepsilon>0$ there exists $M>0$ such that $\left|a_{n}-L\right|<\varepsilon$ whenever $n>M$. * . Very the important L of a sequence does exist, then the sequence converges to L. If the limit of a sequence doe not exist, then the sequence diverges.

Theorem: Limit of a sequence
Let L be a real number. Let the a function of a real variable such that $\lim _{x \rightarrow \infty} f(x)=L$.
If $\left\{a_{n}\right\}$ is a sequence such that $f(n)=a_{n}$ for every positive integer n, then $\lim _{n \rightarrow \infty} a_{n}=L$

Theorem: Absolute value theorem For the sequence $\left\{a_{n}\right\}$, if

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \quad \text { then } \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

b. $a_{n}=\frac{2 n}{n+3}$

$$
\begin{array}{ll}
a_{1}=\frac{2}{4}=\frac{1}{2} & a_{3}=\frac{6}{6}=1 \\
a_{2}=\frac{4}{5} & a_{4}=\frac{8}{7} \\
& a_{5}=\frac{10}{8}=\frac{5}{4}
\end{array}
$$

$$
\left\{a_{5}\right\}=\left\{\frac{1}{2}, \frac{4}{5}, 1, \frac{8}{7}, \frac{5}{4}\right\}
$$

2. Graph the first 10 terms of the sequence $a_{n}=2-\frac{4}{n}$ by hand and then check your result using a graphing calculator.

n	a_{n}	$\left(n, a_{n}\right)$
1	-2	$(1,-2)$
2	0	$(2,0)$
3	$2 / 3 \approx .67$	$(3,2 / 3)$
4	1	$(4,1)$
5	$6 / 5 \sim 1.2$	$(5,6 / 5)$
6	$4 / 3 \approx 1.33$	$(6,4 / 3)$
7	$10 / 7=1.4$	$(7,10 / 7)$
8	$3 / 2=1.5$	$(8,3 / 2)$
9	$14 / 9 \approx 155$	$(9,14 / 9)$
10	$8 / 5 \approx 1.6)$	$(10,8 / 5)$

$$
\begin{aligned}
& \text { 1. Write the first } 5 \text { terms of the sequence. } \\
& \text { a. } a_{n}=\frac{3^{n}}{n!} \\
& a_{1}=3 \\
& \left\{a_{5}\right\}=\left\{3, \frac{9}{2}, \frac{9}{2}, \frac{27}{8}, \frac{81}{40}\right\} \\
& a_{2}=\frac{3^{2}}{2!}=\frac{9}{2} \\
& \Rightarrow a_{3}=\frac{3^{3}}{3!}=\frac{27}{6}=\frac{9}{2} \\
& a_{4}=\frac{3^{4}}{4!}=\frac{81}{24}=\frac{27}{8} \\
& a_{s}=\frac{3^{5}}{5!}=\frac{3 \cdot 3^{4}}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{81}{40}
\end{aligned}
$$

3. Simplify the ratio of factorials.

$$
\text { a. } \begin{aligned}
\frac{25!}{22!} & =\frac{25 \cdot 24 \cdot 23 \cdot 222!}{22!} \\
& =13,800
\end{aligned}
$$

b. $\frac{(n+1)!}{n!}=\frac{(n+1) \cdot n!}{n y,}$

$$
=n+1
$$

4. Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit.
a. $a_{n}=1+(-1)^{n}$
$a_{1}=0$
$a_{2}=2$$\quad \lim _{n \rightarrow \infty}\left[1+(-1)^{n}\right]$ does notexist, so, by definition, a_{n} diverges.
b. $a_{n}=\frac{\sqrt[3]{n}}{\sqrt[3]{n}+1}$

$$
f(n)=a_{n}, \text { for all } n
$$

$\lim _{n \rightarrow \infty} \frac{\sqrt[3]{n}}{\sqrt[3]{n}+1}=\lim _{n \rightarrow \infty} \frac{n^{1 / 3} / n^{1 / 3}}{\frac{n^{1 / 3}}{n^{1 / 3}}+\frac{1}{n^{1 / 3}}}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n^{1 / 3}}}=\frac{1}{1+0}=1$

$$
\begin{aligned}
& \quad \text { c. } a_{n}=\frac{(n-2)!}{n!} \left\lvert\, \begin{array}{l}
\lim _{n \rightarrow \infty}^{\frac{n^{1 / 3}}{\sqrt[3]{n}}}=1 \text { which is finite, so } a_{n} \text { converges } \\
\text { to | by definition }
\end{array}\right. \\
& a_{n}=\frac{(n-2)!}{n(n-1)(n-2)!}=\frac{1}{n^{2}-n} \left\lvert\, \begin{array}{l}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}-n}=0 \\
a_{n} \text { converges to } 0 \text { by definition }
\end{array}\right.
\end{aligned}
$$

d. $a_{n}=\frac{\cos \pi n}{n^{2}}$
e. $a_{n}=\frac{\ln \sqrt{n}}{n}$
5. Determine whether the sequence with the given nth term is monotonic. Discuss the boundedness of the sequence.

$$
\begin{array}{ll}
\quad \text { a. } a_{n}=\frac{n}{2^{n+2}} \\
a_{1}=\frac{1}{2^{1+2}}=\frac{1}{8} & a_{1} \geqslant a_{2} \geqslant a_{3} \geqslant a_{4} \\
a_{2}=\frac{2}{16}=\frac{1}{8} & \ldots \\
a_{3}=\frac{3}{32} \\
a_{4}=\frac{4}{64}=\frac{1}{16} & \ldots \ldots
\end{array}
$$

b. $a_{n}=\left(-\frac{2}{3}\right)^{n}$
c. $a_{n}=n e^{-n / 2}$
6. Use the Bounded Monotonic Sequences theorem to show that the sequence with the given nth term converges and use a graphing calculator to graph the first 10 terms of the sequence and find its limit.

$$
\begin{array}{ll}
a_{n}=4+\frac{1}{2^{n}} & \text { (1) non increasing (see graph) } \\
& \text { (2) Bounds } \\
& \text { - Lower bound at } 4
\end{array} \lim _{n \rightarrow \infty}\left(4+\frac{1}{2}\right)
$$

