$3 / 30 / 11$ - Warmup using warm-up from the $10.3 \mathrm{w.S}$ Lecture 10.3	Friday Lecture 10.4 Last day to dropw/ar w Tomorrow is * ToDAy $4 / 8$ is ExAm 4 a holiday-no classes!

Warm-up:

1. Consider the parametric equation $x=\sqrt[3]{t}$ and $y=1-t$.
a. Graph the parametric equation, indicating the orientation.

t	x	y	(x, y)
-8	-2	9	$(-2,9)$
-1	-1	2	$(-1,2)$
0	0	1	$(0,1)$
1	1	0	$(1,0)$
8	2	-7	$(2,-7)$

b. Eliminate the parameter.
$(x)^{3}=(\sqrt[3]{t})^{3}$

$$
y=1-t
$$

. The range of $x(t)$ is the domain of the plane curve $\rightarrow(-\infty, \infty)$

$$
x^{3}=t
$$

$$
t=1-y
$$

- The range of $y(t)$ is the range of the plane curve $\rightarrow(-\infty, \infty)$

$$
\begin{aligned}
x^{3} & =1-y \\
y & =1-x^{3}
\end{aligned}
$$

c. Evaluate $\frac{d y}{d x}$ using your result from part b.

$$
\begin{aligned}
& \frac{\partial}{\partial x} y=\frac{\partial}{\partial x}\left(1-x^{3}\right) \\
& \frac{d y}{d x}=-3 x^{2}
\end{aligned}
$$

d. Now evaluate the following derivatives using the original parametric equations, $x=\sqrt[3]{t}$ and $y=1-t$.
i. $\frac{d x}{d t}=\frac{1}{3} t^{-2 / 3}=\frac{1}{3 t^{2 / 3}}$
ii. $\frac{d y}{d t}=-1$
e. Now evaluate $\frac{d y}{d x}$ using your results from part d.

$$
\begin{aligned}
\frac{d y}{\partial x} & =\frac{\partial y / \partial t}{\partial x / \partial t} \\
& =\frac{-1}{\left(\frac{1}{3 t^{2 / 3}}\right)} \\
& =-3 t^{2 / 3}
\end{aligned}
$$

But is this the same?!

$$
\begin{aligned}
& \frac{d y}{d x}=-3 t^{2 / 3} \text { and } x^{3}=t \\
& \text { so } \frac{d y}{d x}=-3\left(x^{3}\right)^{2 / 3} \\
&=-3 x^{3(2 / 3)} \\
&=-3 x^{2}
\end{aligned}
$$

which is the same!

PARAMETRIC FORM OF THE DERIVATIVE
If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$, then the slope at Cat (x, y) is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}, \quad \frac{d x}{d t} \neq 0
$$

2. Find $\frac{d y}{d x}$ for the curve given by $x=\cos t$ and $y=\sin t$.

$$
\frac{d y}{\partial x}=\frac{\partial y / d t}{\partial x / \partial t}
$$

$$
\begin{aligned}
& \frac{d y}{d t}=\cos t \\
& \frac{d x}{d t}=-\sin t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{\cos t}{-\sin t} \\
& \frac{d y}{d x}=-\cot t
\end{aligned}
$$

a. Now evaluate the second derivative, that is $\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{d^{2} y}{d x^{2}}$

$$
\begin{aligned}
& \frac{\partial^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{d x / d t} \\
& \frac{d^{2} y}{d x^{2}}=\frac{\partial}{\frac{\partial t}{}(-\cot t)}
\end{aligned}
$$

$$
\frac{d^{2} y}{d x^{2}}=-\csc ^{3} t
$$

HIGHER ORDER DERIVATIVES OF PARAMETRIC EQUATIONS
If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$, then the slope at Cat (x, y) is

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{d x / d t}, \quad \frac{d x}{d t} \neq 0 .
$$

In general we have,

$$
\frac{d^{n} y}{d x^{n}}=\frac{\frac{d}{d t}\left[\frac{d^{n-1} y}{d x^{n-1}}\right]}{d x / d t}, \quad \frac{d x}{d t} \neq 0
$$

3. Determine the t intervals on which the curve is concave downward or concave upward for the curve given by $x=t+1$ and $y=t^{2}+3 t$.

$$
\begin{array}{ll}
\frac{d y}{d t}=2 t+3, & \frac{d x}{d t}=1 \\
\frac{\text { st deriv }}{\frac{d y}{d x}=}=\frac{d y / d t}{\partial x / d t} & \frac{\text { nd deriv }}{\frac{d^{2} y}{d x^{2}}=} \\
\frac{d y}{d x}=\frac{2 t+3}{1} & \frac{d^{2} y}{d x^{2}}=2 \\
\frac{d y}{d x}=2 t+3 & \frac{d^{2} y}{d x^{2}}=2
\end{array}
$$

Normally wed set the Ind deriv. equal to zero, solve for critical numbers and then test the intervals defined by the crit. \#'s to see if they tor using the Ind der iv. funct. Here $\frac{d^{2} y}{d x^{2}}=2>0$ all the time. so the curve is concave upwards for all $\rightarrow(-\infty, \infty)$

ARC LENGTH IN PARAMETRIC FORM
If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$, such that C does not intersect itself on the interval $a \leq t \leq b$ (except possibly at the endpoints), then the arc length of C over the interval is given by

$$
s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t
$$

NOTE: When applying the arc length formula to a curve, be sure that the curve is traced only once on the interval of integration.
4. Find the arc length of the curve given by

$$
\begin{aligned}
& x=\arcsin t \text { and } y=\ln \sqrt{\left.1-t^{2}\right)} \text { on the interval } 0 \leq \mathrm{t} \leq \frac{1}{2} \text {. } \\
& \begin{array}{l}
\left(\frac{d x}{d t}\right)^{2}=\left(\frac{1}{\sqrt{1-t^{2}}}\right)^{2} \quad \begin{array}{l}
y=\frac{1}{2} \ln \left(1-t^{2}\right) \\
\left(\frac{d x}{d t}\right)^{2}=\frac{1}{1-t^{2}} \\
S=\int_{0}^{1 / 2} \sqrt{\left(\frac{d y}{d t}\right)^{2}=\left(\frac{1}{2}\left(\frac{-x t}{1-t^{2}}\right)\right)^{2}+(y / d t)^{2}} d t \\
\left(\frac{d y}{d t}\right)^{2}=\frac{t^{2}}{\left(1-t^{2}\right)^{2}}
\end{array}
\end{array} \\
& \begin{array}{l}
\left(\frac{d x}{d t}\right)^{2}=\left(\frac{1}{\sqrt{1-t^{2}}}\right)^{2} \quad \begin{array}{l}
y=\frac{1}{2} \ln \left(1-t^{2}\right) \\
\left(\frac{d x}{d t}\right)^{2}=\frac{1}{1-t^{2}} \\
\left(\frac{d y}{d t}=\left(\frac{1}{2}\left(\frac{-x t}{1-t^{2}}\right)\right)^{2}\right. \\
\left(\frac{d y}{d t}\right)^{2}=\frac{t^{2}}{\left(1-t^{2}\right)^{2}}
\end{array} \\
S=\int_{0}^{1 / 2} \sqrt{\left(\frac{1 x}{2} / d t\right)^{2}+(y / d t)^{2}} d t
\end{array} \\
& \begin{array}{l}
\left(\frac{d x}{d t}\right)^{2}=\left(\frac{1}{\sqrt{1-t^{2}}}\right)^{2} \quad \begin{array}{l}
y=\frac{1}{2} \ln \left(1-t^{2}\right) \\
\left(\frac{d x}{d t}\right)^{2}=\frac{1}{1-t^{2}} \\
\left(\frac{d y}{d t}=\left(\frac{1}{2}\left(\frac{-x t}{1-t^{2}}\right)\right)^{2}\right. \\
\left(\frac{d y}{d t}\right)^{2}=\frac{t^{2}}{\left(1-t^{2}\right)^{2}}
\end{array} \\
S=\int_{0}^{1 / 2} \sqrt{\left(\frac{1 x}{2} / d t\right)^{2}+(y / d t)^{2}} d t
\end{array} \\
& S=\int_{0}^{1 / 2} \frac{1}{1-t^{2}} d t \\
& \delta=\left.\frac{1}{2} \ln \left|\frac{1+t}{1-t}\right|\right|_{0} ^{1 / 2} \\
& S=\frac{1}{2}\left[\ln \left|\frac{3 / 2}{1 / 2}\right|-\ln \left|\frac{1}{1}\right|\right] \\
& S=1 / 2(\ln 3-0) \\
& \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)_{\left(1-t^{2}\right)}^{2}=\frac{1\left(1-t^{2}\right)}{\left(1-t^{2}\right)}+\frac{t^{2}}{\left(1-t^{2}\right)^{2}} \\
& =\frac{1-t^{2}+t^{2}}{\left(1-t^{2}\right)^{2}} \\
& =\frac{1}{\left(1-t^{2}\right)^{2}} \\
& S=\ln \sqrt{3} \text { units } \\
& 50 \ldots \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{\frac{1}{\left(1-t^{2}\right)^{2}}} \\
& =\frac{1}{1-t^{2}} \\
& \int \frac{d u}{a^{2}-u^{2}}=\frac{1}{2 a} \ln \left|\frac{a+u}{a-u}\right| \\
& +C
\end{aligned}
$$

AREA OF A SURFACE OF REVOLUTION
If a smooth curve C is given by the equations $x=f(t)$ and $y=g(t)$, does not cross itself on the interval $a \leq t \leq b$, then the area S of the surface of revolution formed by revolving C about the coordinate axes is given by the following.

1. $S=2 \pi \int_{a}^{b} g(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad$ Revolution about the x-axis: $g(t) \geq 0$
2. $S=2 \pi \int_{a}^{b} f(t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \quad$ Revolution about the y-axis: $f(t) \geq 0$
3. Find the area of the surface generated by revolving the curve below about the y-axis.
$x=\frac{1}{3} t^{3}$ and $y=t+1$ on the interval $1 \leq \mathrm{t} \leq 2$

$$
f(t)=\frac{1}{3} t^{3}
$$

$$
\begin{array}{ll}
x=\frac{1}{3} \text { and } y=t+1 \text { on the interval } 1 \leq t \leq 2 & \frac{d x}{d t}=t^{2}, \frac{d y}{d t}=1 \\
S=2 \pi \int_{a}^{b} f(t) \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t & u=t^{4}+1 \\
S=2 \pi \int_{1}^{2} \frac{1}{3} t^{3} \sqrt{\left(t^{2}\right)^{2}+(1)^{2}} d t & \frac{d u}{d t}=4 t^{3} \\
S=\frac{2 \pi}{4 \cdot 3} \int_{1}^{2} 4 t^{3} \sqrt{t^{4}+1} d t & d t=\frac{d u}{4 t^{3}} \\
S=\frac{\pi}{3} \frac{2}{3}\left(\left.\frac{2}{3}\left(t^{4}+1\right)^{3 / 2}\right|_{1} ^{2}\right. &
\end{array}
$$

