Next Wednesday and Friday: NO Class 3/21/11 ·Lecture 10.2 · Ecture D.1 4 out-of-class assignment due on Mon.3/28

MATH 251/GRACEY

10.1

MATH 251/GRACEY

5. Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.

a.
$$12x^2 - 2x + 12y^2 = 15$$
 Urcle
b. $x + y^2 - 5y = 1$ parabola
c. $-x^2 - 2x + 3y^2 = 5y^2 - 2 \rightarrow 2 = x^2 + 2x + 2y^2$ ellipse
d. $65x^2 = y^2 + 1$ hyperbola
e. $2x^2 - 8x + y^2 + 5y = 6$ ellipse

6. Find an equation for (a) the tangent lines and (b) normal lines to the

$$\begin{array}{c} \text{hyperbold}_{X}\left(\frac{y^{2}}{4}-\frac{x^{2}}{2}\right)^{2} \text{d} 1 \text{ at } x=4.\\ \hline \text{Step1: Find } y \text{ when } x=4 & \text{Step2: find slope at } (4,6) \text{ and } (4,-6) \\ \hline \frac{y^{2}}{4}-\frac{(4)^{2}}{2}=1 & \frac{2y}{4}\frac{\partial y}{\partial x}-\frac{2\chi}{2}=0 & \frac{\partial y}{\partial x}\Big|_{(4,6)}=\frac{2(4)}{(6)}=\frac{4}{3} \\ y^{2}_{1}=3b & \frac{4}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{1}=3b & \frac{4}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{1}=3b & \frac{2y}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{1}=\frac{4}{5}b & \frac{2y}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{1}=\frac{2}{5}b & \frac{2y}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{1}=\frac{2}{5}b & \frac{2y}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{1}=\frac{2}{5}b & \frac{2y}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{2}=\frac{2}{5}b & \frac{2y}{2}\frac{\partial y}{\partial x}=x & \frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{2}=\frac{2}{5}b & \frac{2y}{2}\frac{\partial y}{\partial x}=x & \frac{2y}{2} \\ y^{2}_{1}=\frac{2}{5}b & \frac{2y}{2}\frac{\partial y}{\partial x}=\frac{2}{5} \\ y^{2}_{2}=\frac{2}{5}b & \frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=x & \frac{2}{5}\frac{\partial y}{\partial x}\Big|_{(4,-6)}=\frac{2}{5}\frac{2(4)}{(-6)}=-\frac{4}{3} \\ y^{2}_{1}=\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=x & \frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{\partial y}{\partial x}=\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{$$

MATH 251/GRACEY

10.1

7. Find the point on the graph of parabola. Step 17 Analysis	$x^2 = 8y$ that is closest to the focus of the y = $\frac{1}{2}$ step 2: Primary Equation
let (x, y) be a point on the parabola	$S = (X - 0)^{2} + (y - 2)^{2}$ $S = x^{2} + (y - 2)^{2}$
Vertex is $(0,0)$ and the focus is $(0,0+p)=(0,2)$	Step 3? Reduce Primary $S(x) = x + (x - 2)^2$
4p=8 p=2 Let S be the square of the dista	nce $5tep4!$ optimize $0^{-16x(11x^2)}$ $5'(x) = 2x + 2(x^2 - 2)' \cdot x = 0$
	$S'(x) = 2x + x^3 - x$ $S'(x) = 2x + x^3 - x$ 3 + 5 = 0 $5 + cpS^2$: Conclusion
8. Find the arc length of the para $0 \le y \le 4$.	$S'(x) = \frac{16}{16}$ $S'(x) = \frac{16}{16}$ $S'(x) = \frac{16}{16}$ $4x - y^2 = 0$ over the interval min. distance is 2

10.2: Plune curves and parametric equations

Definition of a plane Curve
If f and g are continuous functions of t on an interval I,
then the equations

$$x = f(t)$$
 and $y = g(t)$
are called parametric equations and t is called the parameter.
The set of points (x,y) obtained as t varies over the
interval I is called the graph of the parametric
equations. Taken together, the parametric equations and
the graph one called a plane curve, durated by 0 .
Example:
 $x = t^2 + t$, $y = t^2 - t$
 $t = x - y = (x,y)$
 $z = 6 = 3 = (5,3)$
 $z = t^2 + t$, $y = t^2 - t$
eliminate the parameter
 $x = t^2 + t$, $y = t^2 - t$
 $t = x - y = t^2 - t$
 $z = t^2 + t$, $y = t^2 - t$
 $z = t^2 + t$, $y = t^2 - t$
 $t = x - y = y = (x,y)^2 - x - y$
 $z = x - y = y = (x,y)^2 - x - y$
 $z = x - y = y = (x,y)^2 - x - y$