$\frac{3 / 21 / 11}{\text { - Fecture } 10.1 \text { Lecture } 10.2}$
Next wedreoday and Friday:
NO class
4 out-of-class assignment dus on Mon.3128
3. Find the center, foci, and vertices of the hyperbola, and sketch its graph using asymptotes as an aid.

$$
\begin{aligned}
& y^{2}-9 x^{2}+36 x-72=0 \\
& y^{2}-9\left(x^{2}-4 x+(-2)=72-36\right. \\
& y^{2}-9(x-2)^{2}=36 \\
& \frac{y^{2}}{6^{2}}-\frac{(x-2)^{2}}{2^{2}}=1
\end{aligned}
$$

transverse axis vertical
center: $(2,0)$

$$
\begin{aligned}
& \text { Center: } \\
& a=6, b=2, c \\
& (2,0) \\
& b^{2}+2^{2}
\end{aligned}=\sqrt{40}=2 \sqrt{10} \approx 6.32
$$

Foci: $\left(2,2, \frac{1}{10}\right),(2,-2 \sqrt{10})$
4. Find an' equation of the conic section.

Asymptotes: $y=0+\frac{6}{2}(x-2)$

$$
\begin{aligned}
& y=3 x-6 \\
& y=0-\frac{6}{2}(x-2) \\
& y=-3 x+6
\end{aligned}
$$

a. An ellipse with vertices $(0,2)$ and $(4,2)$ and eccentricity $\frac{1}{2}$.

$$
\begin{aligned}
& (h, k)=(2,2) \\
& \frac{a=2}{} \\
& c^{2}=a^{2}-b^{2} \\
& 1=2^{2}-b^{2} \\
& -3=-b^{2}
\end{aligned} \quad b^{2}=3
$$

$$
\left.\begin{aligned}
& e=\frac{c}{a} \\
& \frac{1}{2}=\frac{c}{2} \\
& c=1
\end{aligned} \right\rvert\, \frac{(x-2)^{2}}{4}+\frac{\left(\frac{(-2)^{2}}{3}=1\right.}{2 \frac{1}{2}}
$$

b. A parabola with focus $(2,2)$ and directrix $x=-2$.

$$
\begin{array}{rlr}
x=h-p \rightarrow(-2=h-p & \text { sideways parabola } \\
F=h+p \rightarrow(\underline{2}=h+p & (y-k)^{2}=4 p(x-h) \\
0 & =2 h \text { and } 2=0+p \quad(y-2)^{2}=4(2)(x-0) \\
0 & =h & z=p
\end{array}
$$

c. A hyperbola with vertices $(0, \pm 3)$ and asymptotes: $y= \pm 3 x$.
5. Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola.
a. $12 x^{2}-2 x+12 y^{2}=15$ circle
b. $x+y^{2}-5 y=1$ parabola
c. $-x^{2}-2 x+3 y^{2}=5 y^{2}-2 \rightarrow 2=x^{2}+2 x+2 y^{2}$ ellipse
d. $65 x^{2}=y^{2}+1$ hyperbola
e. $2 x^{2}-8 x+y^{2}+5 y=6$
ellipse
6. Find an equation for (a) the tangent lines and (b) normal lines to the

$$
\text { hyperbolg}{ }_{x}\left(\frac{\partial}{4}-\frac{x^{2}}{2}\right) \frac{\partial}{d x} 1 \text { at } x=4
$$

Step 1: Find y when $x=4 \quad$ Step 2: Find slope at $(4,6)$ and $(4,-6)$

$$
\begin{aligned}
& \frac{y^{2}}{4}-\frac{(4)^{2}}{2}=1 \\
& y^{2}=9 \\
& y^{2}=36 \\
& y= \pm 6
\end{aligned}
$$

Step 3: Equations

$$
\begin{array}{ll}
\frac{2 y}{4} \frac{\partial y}{\partial x}-\frac{2 x}{2}=0 & \left.\frac{\partial y}{\partial x}\right|_{(4,6)}=\frac{2(4)}{(6)}=\frac{4}{3} \\
\frac{y}{2} \frac{\partial y}{\partial x}=x & \left.\frac{\partial y}{\partial x}\right|_{(4,-6)}=\frac{2(4)}{(-6)}=-\frac{4}{3} \\
\frac{\partial y}{\partial x}=\frac{2 x}{y} & \frac{\text { normal line slope o }}{} \\
& \text { at }(4,6) \rightarrow-\frac{3}{4} \\
& \text { at }(4,-6) \rightarrow \frac{3}{4}
\end{array}
$$

Tangent lines:
at $(4,6) \rightarrow y-6=\frac{4}{3}(x-4)$
at $(4,-6) \rightarrow y+6=-\frac{4}{3}(x-4)$

Normal lines at $(4,6) \rightarrow y-6=-\frac{3}{4}(x-4)$ at $(4,-6) \rightarrow y+6=\frac{3}{4}(x-4)$
7. Find the point on the graph of $x^{2}=8 y_{2}$ that is closest to the focus of the parabola.

$$
y=\frac{x^{2}}{8}
$$

Step 1: Analysis
let (x, y) be a point on the parabola

Step 2: Primary Equation

$$
\begin{aligned}
& S=(x-0)^{2}+(y-2)^{2} \\
& S=x^{2}+(y-2)^{2}
\end{aligned}
$$

vertex is $(0,0)$ and the
focus is $(0,0+p)=(0,2)$
Step 3: Reduce Primary

$$
S(x)=x^{2}+\left(\frac{x^{2}}{8}-2\right)^{2}
$$

$$
4 p=8
$$

$$
p=2
$$

Let S be the square of the distance focus is $(0,0)$ and the
8. Find the arc length of the parabola $4 x-y^{2}=0$ over the interval ${ }_{\text {min. distance is } 2}$ $0 \leq y \leq 4$.

$$
\begin{aligned}
& \text { Step 4: optimize }
\end{aligned}
$$

$$
\begin{aligned}
& S^{\prime}(x)=x+x^{3 / 6} \quad \text { Steps: Conclusion }
\end{aligned}
$$

10.2 : Plane Curves and parametric equations

Definition of a Plane curve
If f and g are continuous functions of t on an interval I, then the equations
$x=f(t)$ and $y=g(t)$
are called parametric equations and t is called the parameter.
The set of points (x, y) obtained as t varies over the interval I is called the graph of the parametric equations. Taken together, the parametric equations and the graph are called a plane curve, denoted by C.

Example:

$$
x=t^{2}+t, y=t^{2}-t
$$

t	x	y	(x, y)
0	0	$-a$	$(0,-1)$
1	2	0	$(2,0)$
2	6	z	$(6,3)$
-1	0	2	$(0,2)$
-2	0	2,	2,3
$-1 / 2$	$-1 / 4$	$+1 / 4$	$(\cdots, 3,3,4)$

eliminate the parameter

$$
\left.\begin{array}{l}
x=t^{2}+t, \quad y=t^{2}-t \\
t^{2}+t=x, ~ \\
\frac{-\left(t^{2}-t\right)-y}{2 t=x-y}
\end{array}\right] y=\frac{(x-y)^{2}}{4}-\frac{x-y}{2} .
$$

