TRIGONOMETRY

CHAPTER 3:  RADIAN MEASURE AND THE CIRCULAR FUNCTIONS
3.1 RADIAN MEASURE
· RADIAN:  

· The figure below shows an angle 
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 in standard position along with a circle of radius r.  The vertex of 
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 is at the center of the circle.  Angle 
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 intercepts an arc on the circle equal in length to the radius of the circle.  Therefore, angle 
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 is said to have a measure of 1 radian.  
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· CONVERTING BETWEEN DEGREES AND RADIANS

· The circumference of a circle (the distance around a circle) is given by the formula 
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, where r is the radius of the circle.  This tells us that there are 
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 radians around a circle.  Consider an angle of 360°.  This is a complete circle, so 360° intercepts an arc on the circle equal in length to 
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 times the radius of the circle.  Therefore, we have 
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  This gives us the following relationship:
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So we have,
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· Example:  Convert 45° to radians
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· Example:  Convert 
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· Example:  Find 
[image: image15.wmf]3

cot

4

p



[image: image16.wmf](

)

33

cotcot180

44

cot135

1

p

æö

=×

ç÷

èø

=

=-

o


· EQUIVALENT ANGLE MEASURES IN DEGREES AND RADIANS
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	330° or 
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3.2 APPLICATIONS OF RADIAN MEASURE

· ARC LENGTH OF A CIRCLE:  The length of an arc is proportional to the measure of its central angle.
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· Arc Length:  The length s of the arc intercepted on a circle of radius r by a central angle of measure 
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 radians is given by the product of the radius and the radian measure of the angle, or
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 in radians.

· Example:  Find the radius of a circle in which a central angle of 2 radians intercepts an arc of length 3 feet.
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· Area of a Sector:  The area of a sector of a circle of radius r and central angle 
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 is given by 
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 in radians.

· Example:  Find the area of a sector of a circle having a radius of 18.3 m and a central angle of 125°.
First you have to change the angle to radian measure.  So we have 
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.  Now we can solve the problem using the area for a sector of a circle.
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3.3 CIRCULAR FUNCTIONS OF REAL NUMBERS
· THE CIRCULAR FUNCTIONS
· The radius (r) is always 1.  Therefore, from our earlier equation (derived from the distance formula) we have 
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· Trigonometric functions for the circular functions
· Recall that that the radian measure of 
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 is related to the arc length s.  Here, r = 1, so s = r
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 gives us s = 
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· Since sin s = y and cos s = x, we can replace x and y in the equation 
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 and obtain the identity 
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· Domain and Range of the Circular Functions
· Since the ordered pair (x, y) represents a point on the unit circle, 
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· The domain of cos s and sin s is the set of all real numbers, since cos s and sin s exist for any value of s
· The domains of tan s and sec s are restricted since x has a value of 0 at 
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 plus any multiple of 
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, positive or negative.  So we write the domains for tan s and sec s as follows:   
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· The domains of cot s and csc s are restricted since y has a value of 0 at any multiple of 
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, positive or negative.  So we write the domains for cot s and csc s as follows:   
[image: image121.wmf]{

}

|,

ssnn

p

¹Î

¢

. 
· The Unit Circle:  The figure below shows the relationship between degree and radian measure.  This is something you need to memorize!  It will make the rest of the course much easier.
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3.4 LINEAR AND ANGULAR VELOCITY
· Linear Velocity

· In many situations we need to know how fast a point on a circle is moving or how fast the central angle is changing.  Suppose that point P moves at a constant speed along a circle of radius r and center O.  The measure of how fast the position of P is changing is called linear velocity.  If v represents velocity, then we have 
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where s is the length of the arc traced by point P at time t.  This formula is just 
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 with s as the distance, v as the rate, and t is still time.
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· Angular Velocity
· Consider the figure above.  As point P moves along the circle, 
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 rotates around the origin.  Since 
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 is the terminal side of 
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, the measure of the angle changes as P moves along the circle.  The measure of how fast 
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 is changing is called angular velocity.  Angular velocity is denoted by 
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 is given as
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where 
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 is the measure of 
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 at time t.  
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 is expressed as radians per unit of time.
· Recall from section 3.2 that the arc length of a circle was measured by 
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, we have an alternate formula for linear velocity.
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This formula relates linear and angular velocities.

· Note that a radian is a “pure number”, with no units associated with it.  This is why you get some length per unit of time with no extra unit like degrees.

· Example:  Radius of a gear.  A gear is driven by a chain that 
      travels 1.46 m/s.  Find the radius of the gear if it   

      makes 46 rev/minute.

Solution:  v = 1.46 m/s.  One complete revolution is 2
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and 46 seconds is 
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 radians per second.  Now we have only one unknown in the formula for linear velocity 
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