TRIGONOMETRY

CHAPTER 2:  ACUTE ANGLES AND RIGHT TRIANGLES
2.1 TRIGONOMETRIC FUNCTIONS OF ACUTE ANGLES
· The figure below shows right triangle ABC.  Angle A is an acute angle in standard position.  The legs of the right triangle ABC are x and y, and the hypotenuse is r.  The side of length x is called the side adjacent to angle A and the side of length y is called the side opposite angle A.
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· Right-Triangle-Based Definitions of Trigonometric Functions
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[image: image1.wmf]side opposite

sin=

hypotenuse

y

A

r

=


· 
[image: image2.wmf]hypotenuse

csc=

side opposite

r

A

y

=

, y not equal to 0
· 
[image: image3.wmf]side adjacent

cos=

hypotenuse

x

A

r

=


· 
[image: image4.wmf]hypotenuse

sec=

side adjacent

r

A

x

=

, x not equal to 0
· 
[image: image5.wmf]side opposite

tan=

side adjacent

y

A

x

=

, x not equal to 0
· 
[image: image6.wmf]side adjacent

cot=

side opposite

x

A

y

=

, y not equal to 0
· Cofunctions
· Assume side a is opposite angle A, side b is opposite angle B, and side c (the hypotenuse) is opposite angle C (which is always the 90 degree angle).
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· The sum of angles in a triangle is 180°.  Since angle C is always 90°, angles A and B must sum to 90°.  Therefore we have, 
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which gives us 
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· Similar results, called the cofunction identities are true for the other trigonometric functions.
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· Trigonometric Functions of Special Angles
· Special Angles
· 30(-60(-90( Triangle
· This type of triangle is formed by bisecting one of the angles.  In our example we have chosen the each side of the equilateral triangle to be 2.
· The hypotenuse (the longest side opposite the 90 degree angle) is always twice as long as the shortest side (opposite the 30 degree angle)
· The middle side (opposite the 60 degree angle) is always 
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 times as long as the shortest side
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· NOW YOUR TURN!!!  WHAT ARE THE SIX TRIGONOMETRIC FUNCTIONS FOR THE 60° ANGLE?
· 45(-45(-90( Triangle
· The hypotenuse (opposite the 90 degree angle) always has a length that is 
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 times as long as the length of either of the shorter sides (which are equal in length).  In this case, we choose the sides to be 1.
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· Function Values of Special Angles
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2.2 TRIGONOMETRIC FUNCTIONS OF NON-ACUTE ANGLES

· Reference Angles
· A reference angle for an angle 
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, written 
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, is the positive acute angle made by the terminal side of the angle 
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 and the x-axis.
· In quadrant I, 
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 are the same.
· NEVER use the y-axis to find the reference angle.  ALWAYS use the x-axis!!!
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· Special Angles as Reference Angles

· Each quadrant has a 30°, 45°, and 60° reference angle.  The trigonometric values will be as we discussed for the special acute angles, except the signs change depending on the quadrant.

· For example:  Suppose we have an angle of 240° and we need to find the trigonometric functions without using a calculator.  A 240° angle has a reference angle of               240° - 180° = 60°.  Now we would just put down the trigonometric functions for 60° and change the signs as necessary. 
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2.3 FINDING TRIGONOMETRIC FUNCTION VALUES USING A CALCULATOR

· See Demonstration
2.4 SOLVING RIGHT TRIANGLES

· Significant Digits
· A significant digit is obtained by actual measurement.
· Calculation with Significant Digits
· Adding and Subtracting
· Round the answer so that the last digit you keep is in the right-most column in which all the numbers have significant digits.
· Multiplying and Dividing
· Round the answer to the least number of significant digits found in any of the given numbers.
· Powers and Roots
· Round the answer so that it has the same number of significant digits as the number whose power or root you are finding.
· Significant Digits for Angles
	NUMBER OF SIGNIFICANT DIGITS
	ANGLE MEASURE TO THE NEAREST:

	2
	Degree

	3
	Ten minutes, or nearest tenth of a degree

	4
	Minute, or nearest hundredth of a degree

	5
	Tenth of a minute, or nearest thousandth of a degree


· Angles of Elevation or Depression

· Both the angle of elevation and the angle of depression are measured between the line of sight and the horizontal.


                                           Angle of Elevation
                                  Horizontal
                                  Horizontal                                

                                            Angle of Depression
· Problem Solving

Step 1:  Draw a sketch, and label it with the given information.  Assign 

   variables to any unknown quantities that need to be found.


Step 2:  Use the sketch to write an equation relating the given 

    quantities to the variable.


Step 3:  Solve the equation, and CHECK THAT YOUR ANSWER 

    MAKES SENSE!!!

2.5 FURTHER APPLICATIONS OF RIGHT TRIANGLES

· Bearing
· Bearing is an important idea in navigation.  There are two methods for expressing bearing.
· Single Angle Given:  When a single angle is given, it is understood that the bearing is measured in a clockwise direction from due north.                         N

                          N                            
                                   50°
                                                                                                               270°
· The second method starts with a north-south line and uses an acute angle to show the direction, either east or west, from this line.
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