CONGRUENCE AXIOMS

SIDE-ANGLE-SIDE (SAS)

If two sides and the included angle of one triangle are equal, respectively, to two sides and the included angle of a second triangle, then the triangles are congruent.

ANGLE-SIDE-ANGLE (ASA)

If two angles and the included side of one triangle are equal, respectively, to two angles and the included side of a second triangle, then the triangles are congruent.

SIDE-SIDE-SIDE (SSS)

If three sides of one triangle are equal, respectively, to three sides of a second triangle, then the triangles are congruent.

A triangle that is not a right triangle is called an <u>oblique triangle</u>. The measures of the three sides and three angles of a triangle can be found if <u>at least one side and any other two measures are known</u>.

DATA REQUIRED FOR SOLVING OBLIQUE TRIANGLES

Case 1: One side and two angles are known (SAA or ASA).

Use Law of Sines

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
 or $\frac{a}{\sin A} = \frac{c}{\sin C}$ or $\frac{b}{\sin B} = \frac{c}{\sin C}$

Case 2: Two sides and one angle <u>not included between the two sides</u> are known (SSA).

Use Law of Sines but realize it is the ambiguous case.

Case 3: Two sides and the angle <u>included between the two sides</u> are known (SAS).

Use Law of Cosines

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Case 4: Three sides are known (SSS).

Use Law of Cosines (above)

1. Solve each triangle that exists.

a.
$$a = 189 yd$$
, $b = 214 yd$, $c = 325 yd$

b. $A = 35.3^{\circ}$, $B = 52.8^{\circ}$, AC = 675 ft

The Ambiguous Case of the Law of Sines if angle A is Acute

# of Triangles	Sketch	Applying Law of Sines leads to
0		$\sin B > 1,$ $a < h < b$
1		$\sin B = 1,$ $a = h \text{ and } h < b$
1		$0 < \sin B < 1,$ $a \ge b$
2		$0 < \sin B_2 < 1,$ $h < a < b$

The Ambiguous Case of the Law of Sines if angle A is obtuse

# of Triangles	Sketch	Applying Law of Sines leads to
0		$\sin B \ge 1,$ $a \le b$
1		$0 < \sin B < 1,$ $a > b$

c. $B = 48.2^{\circ}$, a = 890cm, b = 697cm

d. $C = 68.5^{\circ}$, c = 258m, b = 386m

Area Formulas

Heron's Area Formula (SSS)

If a triangle has sides of length a, b, and c, with semiperimeter

$$s = \frac{1}{2}(a+b+c)$$
, then the area of the triangle is $\lambda = \sqrt{s(s-a)(s-b)(s-c)}$.

(SAS)

In any triangle ABC, the area is given by

$$\lambda = \frac{1}{2}ab\sin C$$
, $\lambda = \frac{1}{2}ac\sin B$, and $\lambda = \frac{1}{2}bc\sin A$

2. A painter needs to cover a triangular region 75m by 68m by 85m. A can of paint covers 75 square meters of area. How many cans will be needed?

3. A real estate agent wants to find the area of a triangular lot. A surveyor takes measurements and finds that two sides are 52.1m and 21.3m, and the angle between them is 42.2°. What is the area of the triangular lot?

4. A ship leaves a port at a speed of 16 mph at a heading of 32° . One hour later another ship leaves the port at a speed of 22 mph at a heading of 254° . Find the distance between the ships 4 hours after the <u>first</u> ship leaves the port.

5. A regular pentagon is inscribed in a circle with a radius of 25 inches. Find the length of one side of the pentagon.

