DEFINITION

Data are genders, survey responses).	of	_ (such as measurements,
Statistics is the	of planning	
and	, obtaining	, and
then	,	,
, ar	nd drawing	
based on the		
A <u>population</u> is the complete collect measurements, and so on) to be stu	tion of all died.	(scores, people,
A <u>census</u> is the collection of population.	from	member of the
A <u>sample</u> is a	of members selected from a	
Remember—garbage in, garbage out	t! Sample data must be collected thr	ough a
process of	selection. If sample data ar	re not

1.2 STATI STICAL THINKING

Key Concept...

When conducting a statistical analysis of data we have collected or analyzing a statistical analysis done by someone else, we should not rely on blind acceptance of mathematical calculations. We should consider these factors:

collected in an appropriate way, the data may be completely _____!

- π Context of the data
- π Source of the data
- π Sampling method

- π Conclusions
- π Practical implications

650	24249	0
1050	20666	0
967	19413	0
500	21992	0
1700	21399	0
2000	22022	0
1100	25859	0
1300	20390	0
1400	23738	0
2250	23294	0
800	19063	0
3500	30131	0
1200	18698	0
1250	25348	0

Description: These data for the 1991 season of the National Football League were reported by the Associated Press.

Number of cases: 28

Variable Names:

- 1. TEAM: Name of team
- 2. QB: Salary (\$thousands) of regular quarterback
- 3. TOTAL: Total team salaries (\$thousands)
- 4. NFC: National Football Conference (1) or American Football Conference (0)

The Data:

TEAM	QB	TOTAL	NFC
BILLS	650	24249	0
BENGALS	1050	20666	0
BROWNS	967	19413	0
BRONCOS	500	21992	0
OILERS	1700	21399	0
COLTS	2000	22022	0
CHIEFS	1100	25859	0
RAIDERS	1300	20390	0
DOLPHINS	1400	23738	0
PATRIOTS	2250	23294	0
JETS	800	19063	0
STEELERS	3500	30131	0
CHARGERS	1200	18698	0

SEAHAWKS	1250	25348	0
FALCONS	2250	25642	1
BEARS	3000	23074	1
COWBOYS	1750	28349	1
LIONS	1525	24644	1
PACKERS	1500	23245	1
RAMS	1500	24378	1
VIKINGS	1250	23246	1
SAINTS	1200	23695	1
GIANTS	1600	23258	1
EAGLES	425	19325	1
CARDINALS	1450	20397	1
49ERS	900	17256	1
BUCCANEERS	675	19545	1
REDSKINS	1450	20780	1

Example 1: Refer to the data in the table below. The *x*-values are weights (in pounds) of cars; the *y*-values are the corresponding highway fuel consumption amounts (in mi/gal).

	imay i dei ooi	isamp tion / thoung	.5			
WEIGHT	4035	3315	4115	3650	3565	
FUEL	26	31	29	29	30	
CONSUMPTION						

Car Weights and Highway Fuel Consumption Amounts

a. Context of the data.

i. Are the *x*-values matched with the corresponding *y*-values? That is, is each *x*-value somehow associated with the corresponding *y*-value in some meaningful way?

ii. If the *x* and *y* values are matched, does it make sense to use the difference between each *x*-value and the *y*-value that is in the same column? Why or why not?

b. Conclusion. Given the context of the car measurement data, what issue can be addressed by conducting a statistical analysis of the values?

c. Source of the data. Comment on the source of the data if you are told the car manufacturers supplied the values. Is there an incentive for car manufacturers to report values that are not accurate?

d. Conclusion. If we use statistical methods to conclude that there is a correlation between the weights of cars and the amounts of fuel consumption, can we conclude that adding weight to a car causes it to consume more fuel?

Example 2: Form a conclusion about statistical significance. Do not make any formal calculations. Either use results provided or make subjective judgements about the results.

One of Gregor Mendel's famous hybridization experiments with peas yielded 580 offspring with 152 of those peas (or 26%) having yellow pods. According to Mendel's theory, 25% of the offspring should have yellow pods. Do the results of the experiment differ from Mendel's claimed rate of 25% by an amount that is statistically significant?

1.3 TYPES OF DATA

DEFINITION

A parameter is a	_ measurement describing some
characteristic of a	
A statistic is a	measurement describing some
characteristic of a	

Example 3: Determine whether the given value is a statistic or a parameter.

- a. 45% of the students in a calculus class failed the first exam.
- b. 25 calculus students were randomly selected from all the sections of calculus I. 38% of these student failed the first exam.

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

DEFINITION

Quantitative (aka numerical) data consist of		
representing	or	
Categorical (aka qualitative or attribute) data consist of		
or	that are not numbers representing counts or measurements.	

Give 2 examples of

a. Quantitative data

b. Categorical data

DEFINITION

Discrete data result when the number of possible values is either a		
number.		
Continuous (aka numerical) data result from		_ many possible values that
correspond to some values without gaps, interruptions or jumps.	_ scale that covers a	of

Give 2 examples of

a. Discrete data

b. Continuous data

DEFINITION

The nominal level of measurement is characterized by data that consists of			
,,	, or	_ only. The data cannot	
be arranged in an	scheme (such as low to high).		

Give 2 examples of the nominal level of measurement.

DEFINITION

Data are at the ordinal level of measurement if they can be	_ in some
, but differences (obtained by subtraction) between data va cannot be determined or are meaningless.	lues either

Give 2 examples of the ordinal level of measurement.

DEFINITION

The interval level of measurement is like the _	level, with the additional
property that the	_ between any two data values is meaningful. However,
data at this level do not have a natural present).	starting point (where none of the quantity is

Give 2 examples of the interval level of measurement.

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

DEFINITION

The ratio level of measurement is like the	level, with the additional
property that there is a natural	_ starting place (where zero indicates that
none of the quantity is present). For values at this level,	and
are both meaningful.	

Give 2 examples of the ratio level of measurement.

1.4 CRITICAL THINKING

"Lies, damned lies, and statistics" is a phrase describing the persuasive power of numbers, particularly the use of <u>statistics</u> to bolster weak <u>arguments</u>, and the tendency of people to disparage statistics that do not support their positions. It is also sometimes colloquially used to doubt statistics used to prove an opponent's point.

DEFINITION

A voluntary response sample (aka self-select sample) is one in which _____

themselves ______ whether to be included.

Give two examples of voluntary response samples.

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

CORRELATION AND CAUSALITY

Another way to ______ statistical data is to find a statistical

association between two variables and to conclude that one of the variables _____ (or directly affects) the other variable.

_____ DOES NOT IMPLY CAUSALITY!

REPORTED RESULTS

When collecting data from people, it is better to	take the measurements
instead of asking subjects to	results.

Give two situations in which people might falsely report results.

SMALL SAMPLES

Conclusions should	be based on samples that are far too small.
--------------------	---

PERCENTAGES

Some studies will cite	or	percentages. Keep in
mind that 100% of a quantity is percentages which exceed 100%, such refe	, ,	
PERCENTAGE REVIEW		
"of" means		

	n n
Percent means per	$s_{0} n\% = \frac{n}{100}$
•	

Percentage of: Change the % to $\frac{1}{100}$ then multiply.

Fraction to percentage: Change the fraction to a decimal by dividing the

	_ by the	, then multiply by 100 and
put in the percent symbol.		
Decimal to percentage: Multiply th	e decimal by and	put in the percent symbol.
Percentage to decimal: Remove the	;	_ symbol and divide by
Example 4: Perform the indicated o	peration.	
a. 12% of 1200	C.	Write 8.5% as a decimal

b. Write 5/8 as a percentage.

d. Write 15% as a simplified fraction

LOADED QUESTIONS

If survey questions are not worded carefully, the results of a study can be misleading. Survey questions			
can be	or intentionally	to elicit a desired	
response.			

ORDER OF QUESTIONS

Sometimes survey questions are unintentionally loaded by such factors as the	of
items being considered.	

NONRESPONSE

A ______ occurs when someone either refuses to respond or is unavailable. Why do you think that more and more people are refusing to participate in polls?

MISSING DATA

Results can sometimes be dramatically affected by missing data. This can be due to a ____

occurrence such as a subject	of a study for reasons unrelated to the
study. Some data are missing due to special factors such as th	e tendency of people with low incomes to
be less likely to report their income.	

SELF-INTEREST STUDY

Some parties with interests to ______ will sponsor studies. We should be wary of surveys in which the sponsor can enjoy monetary gains from the results.

PRECISE NUMBERS

Numbers which are ______ should be rounded. 2,234,786 should be rounded to 2 million.

DELIBERATE DISTORTIONS

http://jezebel.com/5730719/the-depressing-realities-of-rape-statistics

1.5 COLLECTI NG SAMPLE DATA

If sample data are not collected in the appropriate way, the data may be so completely useless that no amount of statistical torturing can salvage them.

DEFINITION

In an **observational study**, we ______ and measure specific

characteristics, but we don't attempt to ______ the subjects being studied.

In an **<u>experiment</u>**, we apply some _____ and then proceed to

_____ on the subjects. Subjects in experiments

are called experimental units.

Give one example of an

a. Observational study

b. Experiment

DEFINITION

In a <u>random sample</u> , members fro	om the	are selected in such a way that
each of being selected.	member in the population has	an chance
A probability sample involves sele	ecting members from a	in such a way that
each member of the population ha being selected.	as a ((but not necessarily the same) chance of

DEFINITION

A simple random sample of <i>n</i> subjects is selected in such a way that every possible			
of the	_ size	has the same chance of being chosen.	

Random sample versus simple random sample

Example: Consider a box with 100 marbles.

Random Sample: Reach in and select ______ marble. Each marble has the ______ chance of being selected.

Simple Random Sample: Reach in and select marbles in ______ of 6 (n = 6). No matter how

many ______ you do this, every possible group of six marbles has the ______ chance of being selected. If you then try selecting groups of 17 (n = 17) marbles, you will also find that every possible group of 17 marbles has an equal chance of being selected.

Random, but not Simple Random: For the Presidential Election, let's say you select a random sample of all voting precincts in your state, then interview all the voters as they leave the polling place. The sample is

_____ because all _____ have an equal chance of being selected. The

sample is not simple random, because those ______ from precincts that were not selected have no chance of being interviewed. This is also known as a Cluster Sample.

There is no such thing as a sample that is "Simple Random, but not Random" because n can also equal a

sample of size _____.

Read more:

http://wiki.answers.com/Q/What_is_the_difference_between_a_random_sample_and_a_simple_rando m_sample#ixzz21Z1axK9m

DEFINITION

In systematic sampling , we select some point and then select every <i>k</i> th (such as every 20 th) element in the population.
With <u>convenience</u> sampling, we simply use results that are very to get.
With <u>stratified sampling</u> , we the population into at least two different subgroups (aka strata) so that subjects within the same subgroup share the same characteristics, such
as or bracket, then we draw a sample from each
In <u>cluster sampling</u> , we first the population area into sections or
, then select some of those clusters, and
then choose the members from those selected clusters.

Example 5: I dentify which type of sampling is used: random, systematic, convenience, stratified, or cluster.

- a. Every 8th driver is stopped and interviewed at a sobriety checkpoint.
- b. In a neighborhood, specific streets are randomly selected and all residents on the selected streets are polled.

- c. At Mira Costa College, 500 male students and 500 female students are randomly selected to participate in a study.
- d. Ms. Gracey surveyed the students in her class.
- e. Telephone numbers are randomly generated. Those people are selected to be interviewed.

DEFINITION

In a <u>cross-sectional study</u> , data are,, ar	nd	
at one point in time.		
In a retrospective (aka case-control) study , data are collected from the		
by going back through time (through examination of records, interviews, etc).		
In a prospective (aka longitudinal or cohort) study , data are collected in the		
from groups sharing common factors (called cohorts).		

Give one example of a

- a. Cross-sectional study
- b. Retrospective study
- c. Prospective study

DESIGN OF EXPERIMENTS

RANDOMIZATION		
Subjects are assigned to different	through a process of	selection.
REPLICATION		
Replication is the	of an experiment on more than	subject. Use a
sample size that is e	nough to let us see the true nature of any	,
and obtain the sample using an appropriate	method, such as one based on	
BLINDING		
Blinding is a technique in which the	doesn't know whether h	ne or she is receiving
the or the	In a double-blind e>	xperiment, both the
subject and the treatment or the placebo.	do not know whether the subject	t received the
DEFINITION		
Confounding occurs in an experiment when	you are not able to distinguish among the	
of different		
COMPLETELY RANDOMI ZED EXPERIMEN	ITAL DESI GN	
Assign subjects to different treatment gro selection.	oups through a process of	
RANDOMI ZED BLOCK DESI GN		
A block is a group of subjects that are	, but blocks	differ in ways that
might affect the within different blocks, use this experimen		more treatments
1 blocks (or groups	s) of subjects with similar characteristics	
2 assign tre	eatments to the subjects within each block	ς.

RIGOROUSLY CONTROLLED DESIGN

Carefully assign subjects to different treatment groups, so that those given each treatment are ______ in ways that are important to the ______

MATCHED PAIRS DESIGN

Compa	re exactly	_ treatment groups (such as treatment and placebo) by using subjects
match	ed in	that are somehow related or have similar	
SUMN	IARY		
1.	Use	to assign subjects to different g	groups.
2.		by repeating the experiment on the other factors can be clearly seen.	enough subjects so
3.		the effects of d a completely randomized experimental design.	_ by using such
DEFI	NITION		
A <u>sam</u>	pling error is the differe	nce between a result a	and the true
		result; such an error results from chance sample	e fluctuation.
A <u>nons</u>	sampling error occurs whe	en the sample data are incorrectly	
		(such as by selecting a biased sample oying the data incorrectly).	e, using a defective

Example 6: I dentify the type of observational study (cross-sectional, retrospective, or prospective)

a. Physicians at the Mount Sinai Medical Center plan to study emergency personnel who worked at the site of the terrorist attacks in New York City on September 11, 2001. They plan to study these workers from now until several years into the future.

 b. University of Toronto researchers studied 669 traffic crashes involving drivers with cell phones. They found that cell phone use quadruples the risk of a collision.

2.1 REVIEW AND PREVIEW

CHARACTERISTICS OF DATA

- 1. <u>Center</u>: A representative or average value that indicates where the
- 2. ______ of the data set is located.
- 3. **Variation:** A measure of the amount that data values ______.
- 4. <u>Distribution</u>: The nature or shape of the ______ of the

data over the ______ of values (such as bell-shaped, uniform, or skewed).

- 5. **Outliers**: Sample values that lie very far away from the vast ______ of the other sample values.
- 6. <u>Time</u>: Changing characteristics of the data over ______.

2.2 FREQUENCY DISTRIBUTIONS **DEFINITION**

A **frequency distribution (aka frequency table)** shows how a data set is ______

among all of several categories (or classes) by listing all of the ______ along with

the number of data ______ in each of the categories.

Height (cm)	Frequency
170	7
172	2
174	3
176	1
178	4

Weekly wages in \$	Tally marks	Frequency
of 25 workers		
220 - 234	II	2
235 - 249	214	3
250 - 264	WATH	7
265 - 279	WA	3
288 - 294	WK 101	8
295 - 309	1	1
310 - 324	1	1
Total		25

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

DEFINI	TION
Lower c	lass limits are the numbers that can belong to the different
Upper c	numbers that can belong to the different
	Dundaries are the numbers used to the classes, but without the eated by class limits.
	idpoints are the values in the of the classes. Each class midpoint by adding the lower class limit to the upper class limit and dividing the sum by 2.
-	idth is the between two consecutive lower class limits or two tive lower class boundaries.
PROCED	OURE FOR CONSTRUCTING A FREQUENCY DISTRIBUTION
b n	Determine the number of The number of classes should be between 5 and 20, and the number you select might be affected by the convenience of using large numbers. Calculate the class width.
	class width $\approx \frac{()}{number of classes}$
	Choose either the minimum data value or a convenient value the minimum data value as the first lower class limits.
4. U	Jsing the first lower class limit and the class width, list the other lower class limits. (Add the
	alass width to the lower class limit to get the second lower class limit. Add the class width to the

5. List the lower class limits in a ______ column and then enter the upper class

6. Take each individual data value and put a tally mark in the appropriate class.

_ lower class limit to get the third lower class limit, and so on).

_ the tally marks to find the total frequency for each class.

CREATED BY SHANNON MARTIN GRACEY

limits.

Example 1: Let's construct our own frequency distribution which summarizes the height distribution in our class.

Height of Students in Ms. Gracey's Class

RELATIVE FREQUENCY DISTRIBUTION

NORMAL DI STRI BUTI ON

- 1. The _______ start low, then increase to one or two high frequencies, then decrease to a low frequency.
- 2. The distribution is approximately _______, with frequencies preceding the maximum being roughly a mirror image of those that follow the maximum.

GAPS

The presence of gaps can show that we have data from two or more different

_____. BE CAREFUL—the converse is not necessarily true!

Example 2: Consider the frequency distribution below.

Tar (mg) in filtered cigarettes	Frequency
2-5	2
6-9	2
10-13	6
14-17	15

- a. I dentify the class width
- b. I dentify the class midpoints

c. I dentify the class boundaries

d. If the criteria are interpreted very loosely, does the frequency distribution appear to have a normal distribution?

Example 3: Listed below are amounts of strontium-90 (in millibecquerels) in a simple random sample of baby teeth obtained from Pennsylvania residents born after 1979. Construct a frequency distribution with eight classes. Begin with a lower class limit of 110, and use a class width of ten.

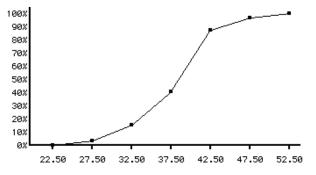
155 142 149 130 151 163 151 142 156 133 138 161 128 144 172 137 151 166 147 163 145 116 136 158 114 165 169 145 150 150 158 151 145 152 140 170 129 188 156

2.3 HI STOGRAMS

Key Concept...

In this section we discuss a visual tool called a histogram, and its significance in representing and analyzing data.

DEFINITION

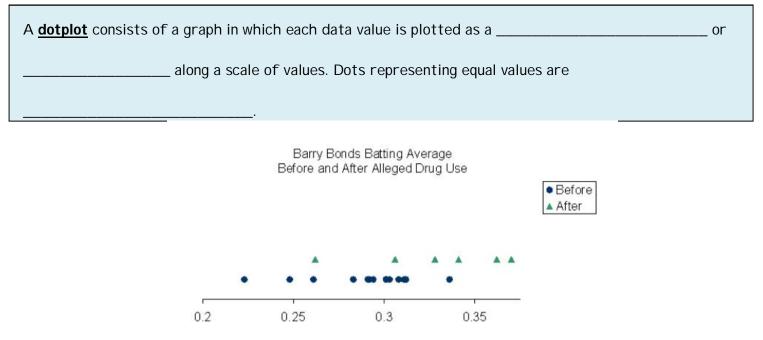

A <u>histogram</u> is a graph consisting of bars of width drawn adjacent to
each other without The horizontal scale represents
of quantitative data values and the vertical scale represents
HORIZONTAL SCALE: Use class or class
/ERTICAL SCALE: Use class
A <u>relative frequency histogram</u> has the same shape and horizontal scale as a histogram, but the vertical
scale is marked with frequencies (as
or) instead of actual frequencies.

CRITICAL THINKING: INTERPRETING HISTOGRAMS

We	the histogram to see what we can learn about
C	
V	
D	
O	
т	

Example 4: Use the frequency distribution from example 3 to construct a histogram.

2.4 STATISTICAL GRAPHICS


OGIVE	
An ogive (pronounced "oh-jive") involves	_ frequencies. Ogives are
useful for determining the number of values below some particular value. An ogi	ve is a
graph that depicts cumulative frequencies. An ogive uses	s class boundaries along
the horizontal scale, and frequencies along th	e vertical scale.

For example, if you saved \$300 in both January and April and \$100 in each of February, March, May, and June, an ogive would look like Figure $\underline{1}$.

Figure 1 Ogive of accumulated savings for one year.

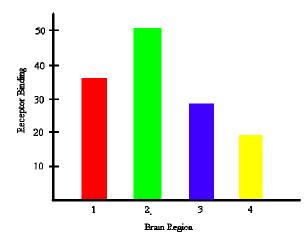
DOTPLOTS

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

STEMPLOTS

A stemplot (aka stem-and-leaf plot) represent	ts data by	
separating each value into two parts: the	and the	

		Boys	Girls
		7	0
stem	leaf	1	1 1
1	6	146	2 268
2	2489	458	3 3446689
2 3 4	0112345678	122289	4 436
1		3479	5 4
	058	258	6
5	018	13	7
6	1	12	12


Example 1: Listed below are amounts of strontium-90 (in millibecquerels) in a simple random sample of baby teeth obtained from Pennsylvania residents born after 1979.

155 142 149 130 151 163 151 142 156 133 138 161 128 144 172 137 151 166 147 163 145 116 136 158 114 165 169 145 150 150 158 151 145 152 140 170 129 188 156

a. Construct a stemplot of the amounts of Strontium-90

i. What does the stemplot suggest about the distribution?

BAR GRAPH
A bar graph uses bars of width to show frequencies of categories of
data. The vertical scale represents
or frequencies. The horizontal scale identifies the different
of qualitative data. The bars may or may not be separated by small gaps.
A multiple bar graph has two or more sets of bars, and is used to compare two or more
sets.

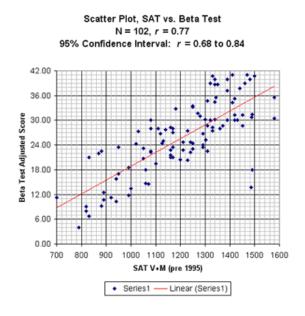
PARETO CHARTS

A Pareto chart is a bar graph for	data, with added stipulation that
the bars are arranged in descending order according to	The
vertical scale represents o	or
frequencies. The horizontal scale identifies the different categorie data.	es of

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

PIECHARTS	
A <u>pie chart</u> is a graph that depicts	data as slices of a
, in which for each category.	the size of each slice is proportional to the frequency count

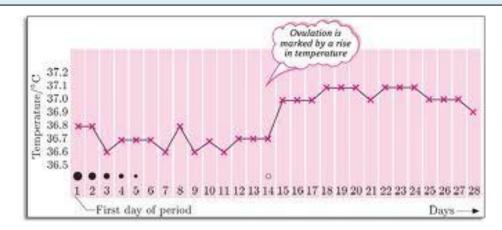
Example 2: Chief financial officers of U.S. companies were surveyed about areas in which job applicants make mistakes. Here are the areas and the frequency of responses: interview (452); résumé (297); cover letter (141); reference checks (143); interview follow-up (113); screening call (85).


a. Construct a pie chart representing the given data.

b. Construct a Pareto chart of the data.

c. Which graph is more effective in showing the importance of the mistakes made by job applicants?

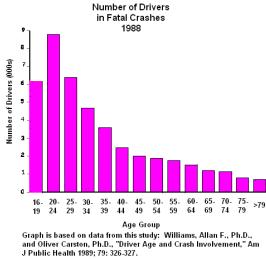
SCATTERPLOTS

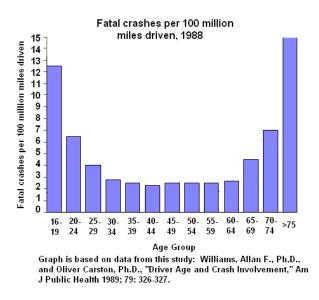

A <u>scatterplot (aka scatter diagram)</u> is a plot of ordered pair _______ data with a horizontal *x*-axis and a vertical *y*-axis. The horizontal axis is used for the first (*x*) variable, and the vertical axis is used for the second variable. The pattern of the plotted points is often helpful in determining whether there is a ______ between the two variables.

TIME-SERIES GRAPH

A time-series graph is a graph of time-series data, which are

data that have been collected at different points in _

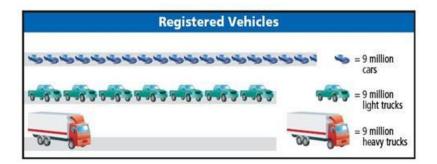



2.5 CRITICAL THINKING: BAD GRAPHS

Nonzero axis

Some graphs are misleading because one or both of the _____ begin at some value other than _, so the differences are __

The following statistics suggest that 16-year-olds are safer drivers than people in their twenties, and that octogenarians are very safe. Is this true?



Solution: No. As the following graph shows, the reason 16-year-old and octogenarians appear to be safe drivers is that they don't drive nearly as much as people in other age groups.

Pictographs

Drawings of objects, often called pictographs, are often misleading.

3.2 MEASURES OF CENTER

DEFINITION

A measure of center is a value at the	or
of a data set.	

DEFINITION

The arithmetic mean (ak	a mean) of a set of data is the	0	ſ
	found by	the	values
and	the total by the		of data
values.			
mean $=\frac{\sum x}{n}=$			
**One advantage of the r	nean is that it is relatively	, so t	hat when samples
are selected from the sa	me population, sample means tend to	be more	than other
measures of center. Anot	her advantage of the mean is that it	t takes every	value into
account. However, becaus	se the mean is	to ever	ry value, just one

______value can affect it dramatically. Because of this fact, we say the mean is not a

_____ measure of center.

NOTATION

Example 1: Find the mean of the following numbers:

17 23 17 22 21 34 27

DEFINITION

The median of a data set is the measure of center that is thevalue	
when the original data values are arranged in of increasing (or	
decreasing) magnitude. The median is often denoted (pronounced "x-tilde"). To find the	
median, first the values, then follow one of these two procedures:	
1. If the number of data values is, the median is the number located in the	
exact of the list.	
2. If the number of data values is, the median is the	
of the two numbers.	
**The median is a measure of center, because it does not change	
by amounts due to the presence of just a few	
values.	

Example 2:

a. Find the median of the following numbers:

17 23 17 22 21 34 27

b. Find the median of the following numbers

17 23 17 22 34 27

DEFINITION

The mode of a data set is the value that occurs with the greatest
A data set can have more than one mode, or no mode.
π When two data values occur with the same greatest frequency, each one is a
and the data set is
π When more than two data values occur with the same greatest frequency, each is a
and the data set is said to be
π When no data value is repeated, we say there is no
**The mode is the only measure of center that can be used with data at the
level of measurement.

Example 3:

a. Find the mode of the following numbers:

17 23 17 22 21 34 27

b. Find the mode of the following numbers

17 23 17 22 21 34 27 22

DEFINITION

The midrange of a data set is the measure	of center that is the value	
between the	and	values in the
original data set. It is found by adding the	maximum data value to the mini	mum data value and then
dividing the sum by two.		
midrange =		
**The midrange is rarely used because it is only the minimum and maximum data values		_ to extremes since it uses
Example 4: Find the midrange of the follow	ving numbers:	

17 23 17 22 21 34 27

Г

ROUND-OFF RULE FOR THE MEAN, MEDI AN, AND MI DRANGE

Carry ______ more decimal place than is present in the original data set. Because values of the mode are the same as some of the original data values, they can be left without any rounding.

MEAN FROM A FREQUENCY DISTRIBUTION

When working with data summarized in a frequency distribution, we don't know the	
values falling in a particular To make calculations possible, we	assume that all
sample values in each class are equal to the class	We can then add the
from each to find t	the total of all sample
values, which we can the by the sum of the frequ	encies, $\sum f$
$\overline{x} = \frac{\sum (f \cdot x)}{\sum f}$	

Tar (mg) in nonfiltered cigarettes	Frequency
10-13	1
14-17	0
18-21	15
22-25	7
26-29	2

Example 5: Find the mean of the data summarized in the given frequency distribution.

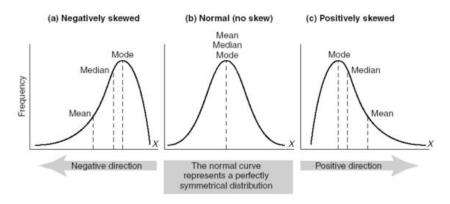
WEIGHTED MEAN

When data values are assigned different weights, we can compute a weighted mean.

$$\overline{x} = \frac{\sum (w \cdot x)}{\sum w}$$

Example 6: A student earned grades of 92, 83, 77, 84, and 82 on her regular tests. She earned grades of 88 on the final and 95 on her class project. Her combined homework grade was 77. The five regular tests count for 60% of the final grade, the final exam counts for 10%, the project counts for 15%, and homework counts for 15%. What is her weighted mean grade? What letter grade did she earn?

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.


SKEWNESS

A comparison of the	, and	b
(an reveal information about the characteristic of skewness. A distribution	
of data is said to be	if it is not and	
extends more to one side th	an the other.	

A Comparison of the Mean, Median, and Mode

The mean, median, and mode are affected by what is called skewness (i.e., lack of symmetry) in the data.

• Here is Figure 15.6, which showed a normal curve, a negatively skewed curve, and a positively skewed curve:

FIGURE 15.6 Examples of normal and skewed distributions

- · Look at the above figure and note that when a variable is normally distributed, the mean, median, and mode are the same number.
- When the variable is skewed to the left (i.e., <u>negatively skewed</u>), the mean shifts to the left the most, the median shifts to the left the second most, and the mode the least affected by the presence of skew in the data.
- Therefore, when the data are negatively skewed, this happens: mean < median < mode.
- When the variable is skewed to the right (i.e., <u>positively skewed</u>), the mean is shifted to the right the most, the median is shifted to the right the second most, and the mode the least affected.
- Therefore, when the data are positively skewed, this happens: mean > median > mode.
- If you go to the end of the curve, to where it is pulled out the most, you will see that the order goes mean, median, and mode as you "walk up the curve" for negatively and positively skewed curves.

3.3 MEASURES OF VARIATION

DEFINITION

The <u>range</u> of a set of data values is the ______ between the ______ and the ______ data value.

DEFINITION

The <code>standard deviation</code> of a set of sample values, denoted by S , is a measure of
of values about the It is a type of deviation of
values from the mean that is calculated by using either of the following formulas:
$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$ or $s = \sqrt{\frac{n \sum (x)^2 - (\sum x)^2}{n(n - 1)}}$
π The standard deviation is a measure of of all values from the
π The value of the standard deviation is usually
 It is zero only when all of the data values are the same
o It is never
π Larger values of the standard deviation indicate amounts of
The value of the standard deviation can increase dramatically with the inclusion of one or more
π The units of the standard deviation are the same units as the original values.

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

General Procedure for Finding Standard Deviation (1 st formula)	Specific Example Using the Following Numbers: 2, 4, 5, 16
Step 1 : Compute the mean \overline{X}	
Step 2: Subtract the mean from each individual sample value	
Step 3: Square each of the deviations obtained from Step 2.	
Step 4: Add all of the squares obtained from Step 3.	

Step 5: Divide the total from Step 4 by the number n-1, which is one less than the total number of sample values present.

Step 6: Find the square root of the result from Step 5. The result is the standard deviation.

STANDARD DEVIATION OF A POPULATION

The definition of standard deviation and the previous formulas apply to the standard deviation of			
	_ data. A slightly different fo	ormula is used to calculate the standard	
deviation σ of a		_: instead of dividing by $n\!-\!1$, we divide	
by the population size N .			
	$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$		

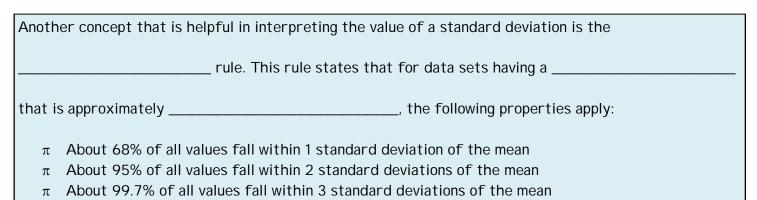
DEFINITION

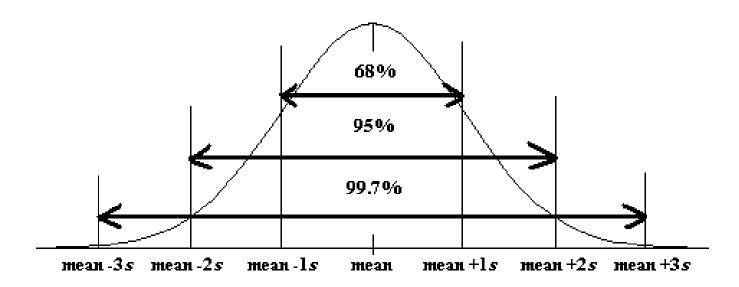
The variance (aka dispersion aka spread) of a set of values is a measure of			
equal to the of the			
Sample variance: s^2 Population variance: σ^2			
**The sample variance is an unbiased estimator of the variance, which means			
that values of s^2 tend to target the value σ^2 of instead of systematically tending to			
or underestimate σ^2 .			

USING AND UNDERSTANDING STANDARD DEVIATION

One simple tool for understanding standard deviation is the ______

of, which is based on the principle that for many data sets, the vast ma
--


(such as 95%) lie within _____ standard deviations of the ______.


RANGE RULE OF THUMB

Interpreting a known value of the standard deviation: We informally defined				
values in a data set to be those that are typical and not too If the				
standard deviation of a collection of data is, use it to find rough estimates				
of the values as follows:				
minimum "usual " value = (mean) - 2 x (standard deviation)				
maximum "usual " value = (mean) + 2 x (standard deviation)				
Estimating a value of the standard deviation s: To roughly estimate the standard deviation from a				
collection of sample data, use				
$s \approx \frac{\text{range}}{4}$				

Example 1: Use the range rule of thumb to estimate the ages of all instructors at MiraCosta if the ages of instructors are between 24 and 60.

EMPIRICAL (OR 68-95-99.7) RULE FOR DATA WITH A BELL-SHAPED DISTRIBUTION

Example 2: The author's Generac generator produces voltage amounts with a mean of 125.0 volts and a standard deviation of 0.3 volt, and the voltages have a bell-shaped distribution. Use the empirical to find the approximate percentage of voltage amounts between

a. 124.4 volts and 125.6 volts

b. 124.1 volts and 125.9 volts

CHEBYSHEV'S THEOREM

The	(or fraction) of any data set lying within <i>K</i> standard deviations
of the mean is always	
the following statements:	
	lie within 2 standard deviations of the mean. es lie within 3 standard deviations of the mean.
COMPARING VARIATION IN DIFF	ERENT POPULATIONS

When comparing	in	_ different sets of,
the	deviations should be compared	only if the two sets of data use the
same and	and they	have approximately the same
DEFINITION		
The coefficient of variation (aka	CV) for a set of nonnegative s	ample or population data, expressed as
a percent, describes the standard	deviation	to the
	and is given by the following:	
	Sample: $CV = \frac{s}{\overline{x}} \cdot 100\%$	
	Population: $CV = \frac{\sigma}{\mu} \cdot 100\%$	6

Example 3: Find the coefficient of variation for each of the two sets of data, then compare the variation.

The trend of thinner Miss America winners has generated charges that the contest encourages unhealthy diet habits among young women. Listed below are body mass indexes (BMI) for Miss America winnersfrom two different time periods.

BMI (from the 1920s and 1930s): 20.4 21.9 22.1 22.3 20.3 18.8 18.9 19.4 18.4 19.1

BMI (from recent winners): 19.5 20.3 19.6 20.2 17.8 17.9 19.1 18.8 17.6 16.8

3.4 MEASURES OF RELATIVE STANDING AND BOXPLOTS

BASICS OF Z-SCORES, PERCENTILES, QUARTILES, AND BOXPLOTS

A _____ (aka standard value) is found by converting a value to a

_____ scale.

DEFINITION

The <u>z score (aka standard value)</u> is the number of	of deviations a given
value <i>x</i> is above or below the following:	The <i>z</i> score is calculated by using one of the
Sample: $z = \frac{x - \overline{x}}{s}$	Population: $z = \frac{x - \mu}{\sigma}$

ROUND-OFF RULE FOR Z SCORES

Round z scores to	decimal places.	This rule is	due to	o the	fact	that	the
standard table of z scores (Table A-2 in Ap	pendix A) has z	scores with	two d	ecima	l plac	ces.	

Z SCORES, UNUSUAL VALUES, AND OUTLIERS

In Section 3.3 we used the	of
to conclude that a value is	if it is more than 2 standard deviations away from
the It follows that u	nusual values have z scores less than or
greater than	

Example 1: The U.S. Army requires women's heights to be between 58 inches and 80 inches. Women have heights with a mean of 63.6 inches and a standard deviation of 2.5 inches. Find the *z* score corresponding to the minimum height requirement and find the *z* score corresponding to the maximum height requirement. Determine whether the minimum and maximum heights are unusual.

DEFINITION

Percentiles are measures of	, denoted	
which divide a set of data into	_ groups with about	_ofthe
values in each group. The process of finding the percent	ile that corresponds to a particular	data value <i>x</i>
is given by the following:		
Percentile of x =		

NOTATION

n			
k			
L			

P_k

Example 2: Use the given sorted values, which are the number of points scored in the Super Bowl for a recent period of 24 years.

36 37 37 39 39 41 43 44 44 47 50 53 54 55 56 56 57 59 61 61 65 69 69 75

- a. Find the percentile corresponding to the given number of points.i. 65
 - ii. 41
- b. Find the indicated percentile or quartile.
 - i. Q_1
 - ii. $P_{
 m 80}$
 - iii. P_{95}

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

DEFINITION

Quartiles are measures of	, denoted	
which divide a set of data into	_ groups with about	ofthe
values in each group.		

FIRST QUARTILE:

SECOND QUARTILE:

THIRD QUARTILE:

DEFINITION

For a set of data, the <u>5-number summary</u> con	sists of the _	value	, the
	, the	(aka	
), the			_, and the
value.			
A boxplot (aka box-and-whisker diagram) is	a graph of a d	ata set that consists of a	
extending from the _		value to the	•
value, and a		with lines drawn at	t the
	, 1	the	, and the

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

OUTLIERS When	data, it is important to	and			
	_ outliers because they can strongly affect values	of some important			
statistics, such as the	and				
In	, a data va	alue is an			
	if it is				
above quartile 3 by an amount greater than $1.5 ext{ x}$ inner quartile range or below quartile 1 by an amount greater than $1.5 ext{ x}$ inner quartile range					
	are called	or			
	boxplots, which represent	as			
special points. A modified bo	oxplot is a boxplot constructed with these modific	ations: (1) A special			
symbol, such as an	or point is used to identify				
and (2) the solid horizontal line extends only as far as the minimum and maximum values which are not outliers.					
•••	line extends only as far as the minimum and maximu	Im values which are not			

36 37 37 39 39 41 43 44 44 47 50 53 54 55 56 56 57 59 61 61 65 69 69 75

Outlier check:

PUTTING IT ALL TOGETHER

We have discussed several basic tools commonly used in statistics. When designing an

_____ data, reading an article in a professional

journal, or doing anything else with data, it is important to consider certain key factors, such as:

π	π of the data	
π	π of the data	
π	π method	
π	π Measures of	
π	π Measures of	
π	π	
π	π	
π	π Changing over	
π	π implications	

4.1 REVIEW AND PREVIEW

RARE EVENT RULE FOR INFERENTIAL STATISTICS

If, under a given assumption, the	of a particular observed is extremely
, we conclude that the	is probably not
- <u></u> .	

4.2 BASIC CONCEPTS OF PROBABILITY

PART 1: BASICS OF PROBABILITY

In considering ______, we deal with procedures that produce

DEFINITION

An event is any	_ of c	r
of a		
A simple event is an	or	_ that cannot be
further broken down into simpler	·	
The sample space for a	consists of all possible	2

NOTATION P

-

A, B, and C

P(A)

1. Relative Frequency Approximation of Probability

	Conduct (or) a		_, and count the number
	of times that event A		occurs. Based on the	ese actual results, <i>P(A)</i>
	is approximated as follows:			
	<i>P</i> (<i>A</i>) =			
2.	Classical Approach to Probabili	ty (Requires		
	Outcomes) Assume that a given procedure h	nas <i>n</i> different		events and that each
	of these simple events has an		chance of	
	If an event A can occur in s of t	hese <i>n</i> ways, then		
	<i>P</i> (<i>A</i>) =		=	
3.	Subjective Probabilities			
	<i>P(A)</i> is	by using kno	owledge of the	
	circumstances.			
Exam	ole 1: I dentifying Probability Value	es		

- a. What is the probability of an event that is certain to occur?
- b. What is the probability of an impossible event?
- c. A sample space consists of 10 separate events that are equally likely. What is the probability of each?

- d. On a true/false test, what is the probability of answering a question correctly if you make a random guess?
- e. On a multiple-choice test with five possible answers for each question, what is the probability of answering correctly if you make a random guess?

Example 2: Adverse Effects of Viagra

When the drug Viagra was clinically tested, 117 patients reported headaches, and 617 did not (based on data from Pfizer, Inc.).

a. Use this sample to estimate the probability that a Viagra user will experience a headache.

- b. Is it unusual for a Viagra user to experience headaches?
- c. Is the probability high enough to be of concern to Viagra users?

LAW OF LARGE NUMBERS

As a procedure is	again and again, the	
probability of an	n event tends to approach the	
probability. The	tells us that	
relative frequency approximations tend to get better with more		

PROBABILITY AND OUTCOMES THAT ARE NOT EQUALLY LIKELY

One common ______ is to _____ assume that outcomes are ______ likely just because we know nothing about the likelihood of each outcome.

Example 3: Flip a coin 50 times and record your results.

a. What is the sample space?

b. What is the probability of getting a result of heads?

SIMULATIONS

Many procedures are so	that the classical approach is impractical. In		
such cases, we can more easily get good estimates by using the			
frequency approach. A	of a procedure is a process that behaves in the		
same way as the it	self, so that		
results are produced.			

CREATED BY SHANNON MARTIN GRACEY

COMPLEMENTARY EVENTS

DEFINITION

The $\underline{\text{complement}}$ of event A, denoted by A, consists of all outcomes in which event A does ______ occur.

Example 4: Find the probability that you will select the incorrect answer on a multiple-choice item if you randomly select an answer.

ROUNDING OFF PROBABILITIES

When expressing the value of a probability, either give the fraction or decimal		
round off final results to significant digits. All digits in a number are		
except for the	_ that are included for proper	
placement of the decimal point.		

PART 2: BEYOND THE BASICS OF PROBABILITY: ODDS

Expressions of likelihood are often given as	, such as 50:1 (or 50 to 1). Because the
use of odds makes many	_ difficult, statisticians, mathematicians, and
scientists prefer to use	The advantage of odds is that they
make it easier to deal with money transfers associated with, so they ten	
to be used in,,	, and

DEFINITION

The actual odds against of event A occurring are the ratio, usually expressed in			
he form of or, where <i>a</i> and <i>b</i> are integers having no ommon factors.			
The actual odds in favor of event A occurring are the ratio, which is the			
of the actual odds against that event.			
The payoff odds against event A occurring are the ratio of			
(if you win) to the amount			

Example 4: Finding Odds in Roulette

A roulette wheel has 38 slots. One slot is 0, another is 00, and the others are numbered 1 through 36, respectively. You place a bet that the outcome is an odd number.

- a. What is your probability of winning?
- b. What are the actual odds against winning?
- c. When you bet that the outcome is an odd number, the payoff odds are 1:1. How much profit do you make if you bet \$18 and win?

4.3 ADDITION RULE

DEFINITION

A compound event is any event combining	or more
events.	

NOTATION

$$P(A \text{ or } B) =$$

FORMAL ADDITION RULE

The formal addition rule :	
P(A or B) =	where $P(A \text{ and } B)$
、	· · · · · · · · · · · · · · · · · · ·
denotes the probability that and	both occur at the time
an an	
	or
INTUITIVE ADDITION RULE	
The intuitive addition rule : To find $P(A ext{ or } B)$	() , find the of the
of ways that event can occur and the	e number of ways that event can occur,
adding in such a way that every	is counted only .
<u> </u>	
P(A or B) is equal to that,	by the total number of
in the	space.
in the	space.
DEFINITION	
DEFINITION	space.
DEFINITION	
DEFINITION Events <i>A</i> and <i>B</i> are disjoint (aka mutually exclus	
DEFINITION Events <i>A</i> and <i>B</i> are disjoint (aka mutually exclus	
DEFINITION Events A and B are disjoint (aka mutually exclused in the second s	ive) if they cannot at the same
DEFINITION Events A and B are disjoint (aka mutually exclusion)	ive) if they cannot at the same
DEFINITION Events A and B are disjoint (aka mutually exclusion)	ive) if they cannot at the same
DEFINITION Events A and B are disjoint (aka mutually exclusion)	ive) if they cannot at the same
DEFINITION Events A and B are disjoint (aka mutually exclusion)	ive) if they cannot at the same
DEFINITION Events A and B are disjoint (aka mutually exclusion)	ive) if they cannot at the same at the same, and consists of all the, and consists of all the occur. An event and its occur. An event and its for etime. Also, we can be sure that A either does or does

Example 1: Sobriety Checkpoint

When the author observed a sobriety checkpoint conducted by the Dutchess County Sheriff Department, he saw that 676 drivers were screened and 6 were arrested for driving while intoxicated. Based on those results, we can estimate the P(I) = 0.00888, where I denotes the event of screening a driver and getting someone who is intoxicated. What does $P(\overline{I})$ denote and what is its value?

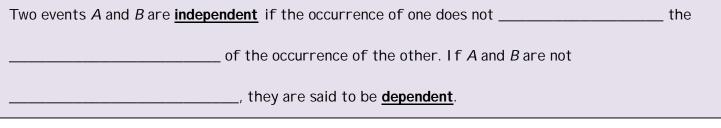
RULES OF COMPLEMENTARY EVENTS

$$P(A) + P(\overline{A}) = 1$$
$$P(\overline{A}) = 1 - P(A)$$
$$P(A) = 1 - P(\overline{A})$$

Example 2: Use the data in the table below, which summarizes challenges by tennis players (based on the data reported in USA Today). The results are from the first U.S. Open that used the Hawk-Eye electronic system for displaying an instant replay used to determine whether the ball is in bounds or out of bounds. In each case, assume that one of the challenges is randomly selected.

	Was the challenge to the call successful?		l?
	Yes	Νο	
Men	201	288	
Women	126	224	

- a. If S denotes the event of selecting a successful challenge, find $P(\overline{S})$.
- b. If *M* denotes the event of selecting a challenge made by a man, find $P(ar{M})$.
- c. Find the probability that the selected challenge was made by a man or was successful.
- d. Find the probability that the selected challenge was made by a woman or was successful.
- e. Find P(challenge was made by a man or was not successful).
- f. Find P(challenge was made by a woman or was not successful).


4.4 MULTI PLI CATI ON RULE: BASI CS

NOTATION

P(A and B) =

$P(B \mid A) =$

DEFINITION

Example 1: Give an example of a. Two independent events

b. Two dependent events

FORMAL MULTIPLICATION RULE

The formal multiplication rule: P(A and B) =	
If A and B are	_ events, $Pig(B Aig)$ is the same as
·	

INTUITIVE ADDITION RULE

When finding the probability that event A occurs in one trial and event B occurs in the next trial,
the probability of event <i>A</i> by the probability of event <i>B</i> , but be sure that
the of event <i>B</i> takes into account the previous
of event A.

Example 2: Use the data in the table below, which summarizes blood groups and Rh types for 100 subjects.

	0	Α	В	AB
Rh⁺	39	35	8	4
Rh⁻	6	5	2	1

- a. If 2 of the 100 subjects are randomly selected, find the probability that they are both group O and type Rh^{+} .
 - i. Assume that the selections are made with replacement.
 - ii. Assume that the selections are made without replacement.

- b. People with blood that is group O and type Rh⁻ are considered to be universal donors, because they can give blood to anyone. If 4 of the 100 subjects are randomly selected, find the probability that they are all universal recipients.
 - i. Assume that the selections are made with replacement.
 - ii. Assume that the selections are made without replacement.

Example 3: Suppose that you are married and want to have 3 children. Assume that the probability for you to give birth to a girl is equal to the probability for you to give birth to a boy, and that you only give birth to one child at a time.

a. Make a tree diagram and list the sample space.

- b. What is the probability that you have all girls?
- c. What is the probability that you have 2 boys?
- d. What is the probability that you have at least one girl?

TREATING DEPENDENT EVENTS AS INDEPENDENT: THE 5% GUIDELINE FOR CUMBERSOME CALCULATIONS

If calculations are very cumbersome and if a size is no more than
of the size of the population, treat the selections as being
(even if the selections are made without, so they are technically
).

Example 4: A quality control analyst randomly selects three different car ignition systems from a manufacturing process that has just produced 200 systems, including 5 that are defective.

- a. Does this selection process involve independent events?
- b. What is the probability that all three ignition systems are good? (Do not treat the events as independent).

- c. Use the 5% guideline for treating the events as independent, and find the probability that all three ignition systems are good.
- d. Which answer is better: The answer from part (b) or the answer from part (c)? Why?

4.5 MULTIPLICATION RULE: COMPLEMENTS AND CONDITIONAL PROBABILITY

COMPLEMENTS: THE PROBABILITY OF "AT LEAST ONE"

 π At least one is equivalent to _____ or _____.

π The ________of getting at least one item of a particular

type is that you get _____ items of that type.

P(at least one) = 1 - P(none)

Example 1: Provide a written description of the complement of the following event: *When Brutus asks five different women for a date, at least one of them accepts.*

Example 2: If a couple plans to have 8 children what is the probability that there will be at least one girl?

CONDITIONAL PROBABILITY

DEFINITION

A conditional probability of an event is a	obtained with the additional
that some other event has already	
Pig(B Aig) denotes the probability of an event B oc	curring, given that event A has
already	
$P(B \mid A) =$	_

INTUITIVE APPROACH TO CONDITIONAL PROBABILITY

The ______ probability of *B* ______A can be found by

_____ that event A has occurred, and then calculating the probability that

event *B* will ______.

Example 3: Use the table below to find the following probabilities.

	Did the Subject Actually Lie?	
	No (Did Not Lie)	Yes (Lied)
Positive test result	15	42
(Polygraph test indicated that	(false positive)	(true positive)
the subject lied)		
Negative test result		
(Polygraph test indicated that	32	9
the subject did not lie)	(true negative)	(false negative)

a. Find the probability of selecting a subject with a positive test result, given that the subject did not lie.

- b. Find the probability of selecting a subject with a negative test result, given that the subject lied.
- c. Find P(negative test result | subject did not lie).

d. Find P(subject did not lie | negative test result $)_{.}$

e. Are the results from (c) and (d) equal?

Example 4: The Orange County Department of Public Health tests water for contamination due to the presence of *E. coli* bacteria. To reduce the laboratory costs, water samples from six public swimming areas are combined for one test, and further testing is done only if the combined sample fails. Based on past results, there is a 2% chance of finding *E. coli* bacteria in a public swimming area. Find the probability that a combined sample from six public swimming areas will reveal the presence of *E. coli* bacteria.

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

4.6 COUNTING

FUNDAMENTAL COUNTING RULE

For a	of two	in which the first event can occur
	ways and the second event can occur	ways, the events together can occur a total
of	ways.	

Example 1: How many different California vehicle license plates (not specialized plates) are possible if the first, fifth, sixth, and seventh digits consist of a number from 1-9, and the second, third, and fourth digits have letters?

NOTATION

The **factorial symbol(!)** denotes the product of decreasing positive whole numbers.

Example 2: Evaluate 5!

FACTORIAL RULE

A collection of	different items can be	_ in order	in
different ways.			

Example 3: Find the number of ways that 8 people can be seated at a round table.

PERMUTATIONS RULE (WHEN ITEMS ARE ALL DIFFERENT)

Reaui	rements:
	There are items available.
2.	We select of the items (without replacement).
3.	We consider of the same items to be
	sequences. This would mean that ABC is different from CBA and is counted separately.
lfthe	e preceding requirements are satisfied, the number of (aka
) of items selected from different available items
(with	out replacement) is
	$_{n}P_{r} =$

Example 4: A political strategist must visit state capitols, but she has time to visit only three of them. Find the number of different possible routes.

PERMUTATIONS RULE (WHEN SOME ITEMS ARE IDENTICAL TO OTHERS)

•	Requirements: 1. There are items available, and some items are			to others.
2.	We select of [·]	the items (without r	eplacement).	
	We consider sequences.	of dis	stinct items to be	
If the preceding requirements are satisfied, and if there are alike, alike,,				
	alike, the number of		_ or	of all
items selected without replacement is				

Example 5: In a preliminary test of the MicroSort gender-selection method, 14 babies were born and 13 of them were girls.

a. Find the number of different possible sequences of genders that are possible when 14 babies are born.

b. How many ways can 13 girls and 1 boy be arranged in a sequence?

c. If 14 babies are randomly selected, what is the probability that they consist of 13 girls and 1 boy?

d. Does the gender-selection method appear to yield a result that is significantly different from a result that might be expected from random chance?

COMBINATIONS RULE

Requir	ements:		
1.	There are	items available.	
2.	We select	_ of the items (without replacement).	
3	We consider	of the same items to be the	
0.		at ABC is the same as CBA.	·
If the preceding requirements are satisfied, the number of of of			
items selected from different items is			
		C	
		$_{n}C_{r} =$	

Example 6: Find the number of different possible five-card poker hands.

Example 7: The Mega Millions lottery is run in 12 states. Winning the jackpot requires that you select the correct five numbers between 1 and 56, and, in a separate drawing, you must also select the correct single number between 1 and 46. Find the probability of winning the jackpot.

5.2 RANDOM VARI ABLES

DEFINITION

A random variable is a		_ (typically represented by) that has a
		_ value, determined by,
for each	ofa	·

DEFINITION

A probability distribution is a	_ that gives the
for each value of the	It is often
expressed in the format of a,,	, or
·	

NOTE

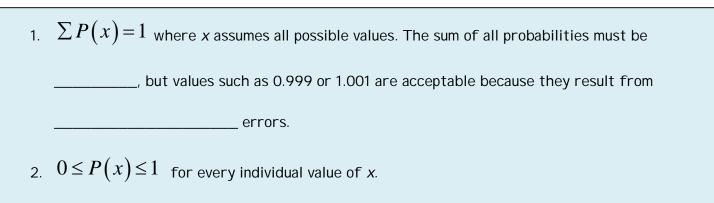
If a probability value is very small, such as 0.000000123, we can represent it as 0+ in a table, where 0+

indicates that the probability value is a very small positive number. Why not represent this as 0?

Recall the tree diagram we made for a couple having 3 children:

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

DEFINITION


A discrete random variable has either a	number of		
or a	number of values, where		
refers to the fact that there might be			
many values, but they can be	with a		
process, so that the number of values is 0 or 1 or 2 or 3, etc.			
A continuous random variable has	many values, and those values can be		
associated with on a _	scale without		
or			
Example 1: Give two examples of a. Discrete random variables	b. Continuous random variables		

GRAPHS

There are various ways to graph a _	distribution, but we will consider only
the	A probability histogram is
similar to a relative frequency histo	gram, but the vertical scale shows

instead of ______ frequencies based on actual sample events.

REQUIREMENTS FOR A PROBABILITY DISTRIBUTION

MEAN, VARIANCE, AND STANDARD DEVIATION

1.
$$\mu = \Sigma [x \cdot P(x)]$$

2.
$$\sigma^{2} = \Sigma [(x - \mu)^{2} \cdot P(x)]$$

3.
$$\sigma^{2} = \Sigma [x^{2} \cdot P(x)] - \mu^{2}$$

4.
$$\sigma = \sqrt{\Sigma [x^{2} \cdot P(x)] - \mu^{2}}$$

round-off rule for $\mu, \ \sigma, \mbox{and} \ \sigma^2$

Round results by carrying one more	place than the number of decimal		
places used for the variable _	If the values of are		
, round to one decimal place.			
IDENTIFYING UNUSUAL RESULTS WITH THE RANGE RULE OF THUMB			
The range rule of thumb may be helpful in the value of a			
	According to the		
, most val	ues should lie within standard		

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.				
deviations of the	_; it is	for a value to differ from		
the mean by than	standard deviations.			
Maximum usual value = _	+			
Minimum usual value = _				
IDENTIFYING UNUSUAL RESULTS WITH PROBABILITIES <i>x</i> successes among <i>n</i> trials is an unusually high number of successes if the				
of or more	is unlikely with a probability of	or		
x successes among n trials is an unusually low number of successes if the				
of or fewer	is unlikely with a probability o	f or		
·				
RARE EVENT RULE FOR INFERENTIAL STATISTICS				
If, under a given	, the probability of a partic	ular		
event is extremely small, we conclude that the is probably not				

Example 2: Based on information from MRI Network, some job applicants are required to have several interviews before a decision is made. The number of required interviews and the corresponding probabilities are: 1 (0.09); 2 (0.31); 3 (0.37); 4 (0.12); 5 (0.05); 6 (0.05).

a. Does the given information describe a probability distribution?

b. Assuming that a probability distribution is described, find its mean and standard deviation.

c. Use the range rule of thumb to identify the range of values for usual numbers of interviews.

d. Is it unusual to have a decision after just one interview. Explain.

DEFINITION

The expected value of a	random variable is denoted by	, and it
represents the	of the	I t is
obtained by finding the value of $\sum [x \cdot P(x)]$.		
$E = \sum \left[x \right]$	$\cdot P(x)$]	

Example 3: There is a 0.9968 probability that a randomly selected 50-year old female lives through the year (based on data from the U.S. Department of Health and Human Services). A Fidelity life insurance company charges \$226 for insuring that the female will live through the year. If she does not survive the year, the policy pays out \$50,000 as a death benefit.

- a. From the perspective of the 50-year-old female, what are the values corresponding to the two events of surviving the year and not surviving?
- b. If a 50-year-old female purchases the policy, what is her expected value?
- c. Can the insurance company expect to make a profit from many such policies? Why?

5.3 BI NOMI AL PROBABI LI TY DI STRI BUTI ONS

DEFINITION

A binomial probability distribution results from a procedure that meets all of the following					
requirements:					
1. The procedure has a	of trials.				
2. The trials must be					
3. Each trial must have all	classified into				
(commonly referred to as	and).				
4. The probability of a	remains the in all trials.				

NOTATION FOR BINOMIAL PROBABILITY DISTRIBUTIONS

S and F (success and failure) denote the two

possible categories of outcomes

P(S) = p

P(F) = 1 - p = q

n

x

р

q

P(x)

Example 1: A psychology test consists of multiple-choice questions, each having four possible answers (a, b, c, and d), one of which is correct. Assume that you guess the answers to six questions.

a. Use the multiplication rule to find the probability that the first two guesses are wrong and the last four guesses are correct.

b. Beginning with WWCCCC, make a complete list of the different possible arrangements of 2 wrong answers and 4 correct answers, then find the probability for each entry in the list.

- c. Based on the preceding results, what is the probability of getting exactly 4 correct answers when 6 guesses are made?
- d. Now use the Binomial Probability Formula to find probability of getting exactly 4 correct answers when 6 guesses are made.

BINOMIAL PROBABILITY FORMULA

$$P(x) = \frac{n!}{(n-x)!x!} \cdot p^{x} \cdot q^{n-x} \quad \text{for } x = 0, 1, 2, \dots, n$$

Example 2: Assuming the probability of a pea having a green pod is 0.75, use the binomial probability formula to find the probability of getting exactly 2 peas with green pods when 5 offspring peas are generated.

5.4 MEAN, VARIANCE, AND STANDARD DEVIATION FOR THE BINOMIAL DISTRIBUTION

Binomial Distributions	
1. $\mu = np$	
2. $\sigma^2 = npq$	
3. $\sigma = \sqrt{npq}$	
	1. $\mu = np$ 2. $\sigma^2 = npq$

RANGE RULE OF THUMB

Maximum usual value:

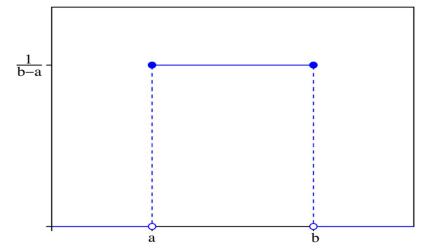
Minimum usual value:

Example 1: Mars, I nc. claims that 24% of its M&M plain candies are blue. A sample of 100 M&Ms is randomly selected.

a. Find the mean and standard deviation for the numbers of blue M&Ms in such groups of 100.

b. Data Set 18 in Appendix B consists of 100 M&Ms in which 27 are blue. Is this result unusual? Does it seem that the claimed rate of 24% is wrong?

Example 2: In a study of 420,095 cell phone users in Denmark, it was found that 135 developed cancer of the brain or nervous system. If we assume that the use of cell phones has no effect on developing such cancer, then the probability of a person having such a cancer is 0.000340.


- a. Assuming that cell phones have no effect on developing cancer, find the mean and standard deviation for the numbers of people in groups of 420,095 that can be expected to have cancer of the brain or nervous system.
- b. Based on the results from part (a), is it unusual to find that among 420,095 people, there are 135 cases of cancer of the brain or nervous system? Why or why not?
- c. What do these results suggest about the publicized concern that cell phones are a health danger because they increase the risk of cancer of the brain or nervous system?

6.2 THE STANDARD NORMAL DI STRI BUTI ON

UNIF	ORM DISTRIBUTION	IS					
The _			allows us	allows us to see two very important			
prope	rties:						
1.	The	under the	of a	distribution is equal			
	to						
2.	There is a	betw	een	and			
		(or		frequency), so some			
		can be found by _		the corresponding			

DEFINITION

A		_ has a uniform distribution
if its values are spread	over the	of
	. The graph of a uniform distribution results	in a
	shape.	

Example 1: The Newport Power and Light Company provides electricity with voltage levels that are uniformly distributed between 123.0 volts and 125.0 volts. That is, any voltage amount between 123.0 volts and 125.0 volts is possible, and all of the possibilities are equally likely. If we randomly select one of the voltage levels and represent its value by the random variable *x*, then *x* has a distribution that can be graphed.

a. Sketch a graph of the uniform distribution of voltage levels.

b. Find the probability that the voltage level is greater than 124.0 volts.

- c. Find the probability that the voltage level is less than 123.5 volts.
- d. Find the probability that the voltage level is between 123.2 volts and 124.7 volts.
- e. Find the probability that the voltage level is between 124.1 volts and 124.5 volts.

The g	raph of a probability distribut	ion, such as part (a) ir	1 the previous ex	cample is called	la
			A density curve	e must satisfy	the following two
	rements.				
1.	The total	under the		_must equal	
2.	Every point on the	must have	a vertical		that is
	0r				
DEFI	NITION				
The <u>s</u>	tandard normal distribution is	s a			
	wi	th ;	and	The tot	al
	under its		is	equal to	

	$f(X) \qquad f(X) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$	
FIND	ING PROBABILITIES WHEN GIVEN z SCORES	
Using	table, we can find or	for many different
	Such areas can also be found using a	
	. When using Table A-2, it is essential to under	stand these points:
1.	Table A-2 is designed only for the	distribution, which
	has a mean of and a standard deviation of	
2.	Table A-2 is on pages, with one page for	and the
	other page for	
3.	Each value in the body of the table is a	from the
	up to a ab	ove a specific
	·	
4.	When working with a, avoid confusion between	and
	z score: along the	_ scale of the standard
	normal distribution; refer to the column and	d row of
	Table A-2.	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Area:			unde	er the _			;	refer	to the	e values	s in th
			of T	able A-	2.							
Z 00 01 02 03 04 05 06 07 08 0 -3.50 and .0003	The part of	of the _			_denot	ing				is fo	und acr	ross t
ABLE A-2 Standard Normal (z) Distribution: Cumulative Area from the LEFT z .00 .01 .02 .03 .04 .05 .06 .07 .08 .0 -3.50 and lower .0001 .02 .03 .04 .05 .06 .07 .08 .0 -3.4 .0003				_ofTa	ble A-2.							
ABLE A-2 Standard Normal (z) Distribution: Cumulative Area from the LEFT z .00 .01 .02 .03 .04 .05 .06 .07 .08 .0 -3.50 and lower .0001 .02 .03 .04 .05 .06 .07 .08 .0 -3.4 .0003		/	$\overline{}$		1	NE	GAT	ΓIV	Ez	S	cor	res
ABLE A-2 Standard Normal (z) Distribution: Cumulative Area from the LEFT z .00 .01 .02 .03 .04 .05 .06 .07 .08 .0 -3.50 and lower .0001 .02 .03 .04 .05 .06 .07 .08 .0 -3.4 .0003 .0003 .0003 .0004 .0001 .0015 .0015 .0014 .00 -2.9 .0019 .0018 .0017 .0016	12	Χ										
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .0 -3.50 and lower .0001	_	z	0		-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TABLE A	-2 Star	ndard Norr	mal (z) Di	stribution	: Cumulati	ve Area fr	om the L	FT			
and lower .0001 -3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 -3.3 .0005 .0005 .0006 .0006 .0006 .0006 .0006 .0005 .000 -3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0008 .0007 .00 -3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .00 -2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .00 -3.8	z	.00	.01	.02	.03	.04	.05	.06	.0	7	.08	.09
lower .0001 -3.4 .0003 .0004 .0001 .0011 .0010 .000 .0003 .0008 .0008 .0008 .0002 .0012 .0012 .0012 .0012 .0012 .0012 .0012 .0012 .0020 .0014 .00 .0020 .0020 .0020 .0021<	-3.50	2										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and	1000000000										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lower		0000	0000	0000	0000	0000	0000	00	0.2	0000	000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1 /	and the second se										.000
-2.8 -2.8 -0.023 0.023 0.023 0.022 0.021 0.1 0.020 0.0 POSITIVE z Scores vela (continued) Cumulative Area from the LEFT z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .6675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .617 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6446 .6443 .6443 .6484 .6879 0.4 .6554 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224		.0010										.0010
Image: problem in the state of the	-3.2 -3.1 -3.0			.0013	.0012	.0012						
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5358 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .636 .6675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .611 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 <	-3.1 -3.0	.0013	.0013	.0018				.0015	.00	15	.0014	.0014
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5358 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .636 .6675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .611 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 <	-3.1 -3.0	.0013 .0019	.0013	.0018	.0017	.0016	.0016		.00	15	.0014	
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .6636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .614 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .724	-3.1 -3.0	.0013 .0019	.0013	.0018	.0017 .0023	.0016 .0023	.0016	····	00. 101	15 N.J	.0014 0020	.0014
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .6636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .614 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .724	-3.1 -3.0	.0013 .0019	.0013	.0018	.0017 .0023	.0016 .0023	.0016	····	00. 101	15 N.J	.0014 0020	
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .6636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .614 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .724	-3.1 -3.0	.0013 .0019	.0013	.0018	.0017 .0023	.0016 .0023	.0016	····	00. 101	15 N.J	.0014 0020	
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .6636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .614 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .724	-3.1 -3.0	.0013 .0019	.0013	.0018	.0017 .0023	.0016 .0023	.0016	····	00. 101	15 N.J	.0014 0020	
z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .611 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224	-3.1 -3.0	.0013 .0019	.0013	.0018	.0017 .0023	.0016 .0023	.0016	····	00. 101	15 N.J	.0014 0020	
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .614 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224	-3.1 -3.0 -2.9 -38	.0013 .0019	.0013	.0018	.0017 .0023	.0016 .0023	.0016	····	00. 101	15 N.J	.0014 0020	
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .614 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224	$-3.1 \\ -3.0$.0013 .0019	0013 0018	.0018	.0017 .0023.	.0016 .0023 POS	.0016	····	00. 101	15 N.J	.0014 0020	
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .614 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224	-3.1 -3.0 -2.9 -2.8 TABLE A-	.0013 .0019 	.0013 .0018	.0018	.0017 .0023 . rea from th	.0016 .0023 POS	.0016 20022,	VE	Z S	۱۵ د.	.0014 0020	
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224	-3.1 -3.0 -2.9 	.0013 .0019 	.0013 .0018 .0018 .01 .5040	.0018	.0017 .0023. rea from th .03 .5120	.0016 .0023- POS ne LEFT .04 .5160	.0016 .0022 .01 TI .05 .5199	.0021 VE .06 .5239	.00 Z S	.08 .5319	.0014 0020	
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224	-3.1 -3.0 -2.9 	.0013 .0019 	.0013 .0018 .0018 .01 .01 .5040 .5438	.0018 	.0017 .0023. rea from th .03 .5120 .5517	.0016 .0023- POS ne LEFT .04 .5160 .5557	.0016 .0022 .01 TI .05 .5199 .5596	.0021 VE .06 .5239 .5636	.00 Z S .07 .5279 .5675	.08 .5319 .5714	.0014 0020	
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224	-3.1 -3.0 -2.9 	2 (cont .00 .5000 .5398 .5793	.0013 .0018 .0018 .01 .01 .5040 .5438 .5832	.0018 	.0017 .0023. rea from th .03 .5120 .5517 .5910	.0016 .0023- POS ne LEFT .04 .5160 .5557 .5948	.0016 .0022 .01 TI .05 .5199 .5596 .5987	.0021 VE .06 .5239 .5636 .6026	.00 Z S .07 .5279 .5675 .6064	.08 .5319 .5714 .6103	.0014 0020 07CE 07CE 009 .535 .575 .614	
	-3.1 -3.0 -2.9 	2 (cont .00 .5000 .5398 .5793 .6179	.0013 .0018 .0018 .018 .01 .01 .5040 .5438 .5832 .6217	.0018 	.0017 .0023. .0023. .0023. .0025. .0025. .0025. .0025. .0025. .0025. .0017 .0025. .0017 .0025. .0017 .0025. .005. .005005005005005005005005005005005005005005.	.0016 .0023- POS ne LEFT .04 .5160 .5557 .5948 .6331	.0016 .0022 .01 111 .05 .5199 .5596 .5987 .6368	.0021 VE .06 .5239 .5636 .6026 .6406	.00 Z S .07 .5279 .5675 .6064 .6443	.08 .5319 .5714 .6103 .6480	.0014 0020 07CE 07CE 009 .535 .575 .614 .651	
	-3.1 -3.0 -2.9 2.8 TABLE A - z 0.0 0.1 0.2 0.3 0.4	2 (cont .00 .5000 .5398 .5793 .6179 .6554	.0013 .0018 .0018 .018 .01 .01 .5040 .5438 .5832 .6217 .6591	.0018 	.0017 .0023, .0023, .0023, .0023, .0023, .003 .5120 .5517 .5910 .6293 .6664	.0016 .0023- POS ne LEFT .04 .5160 .5557 .5948 .6331 .6700	.0016 .0022 .01711 .05 .5199 .5596 .5987 .6368 .6736	.0021 VE .06 .5239 .5636 .6026 .6406 .6772	.00 Z S .07 .5279 .5675 .6064 .6443 .6808	.08 .5319 .5714 .6103 .6480	.0014 0020 Pres .535 .575 .614 .651 .687	

.7580

.7881

.8159

.8413

.8643

.8849

.9032

.9192

.7611

.7910

.8186

.8438

.8665

.8869

.9049

.9207 134 .7642

.7939

.8212

.8461

.8686

.8888

.9066

2222 57 .7673

.7967

.8238

.8485

.8708

.8907

.9082

.9236

.0720

.7704

.7995

.8264

.8508

.8729

.8925

.9099

.9251

.7734

.8023

.8289

.8531

.8749

.8944

.9115

.9265

.7764

.8051

.8315

.8554

.8770

.8962

.9131

.9279

.7794

.8078

.8340

.8577

.8790

.8980

.9147

.9292

.7823

.8106

.8365

.8599

.8810

.8997

.9162

9306

.7852

.8135

.8389

.8624

.8830

.9015

.913

93

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

NOTATION

$$P(a < z < b)$$

P(z > a)

P(z < a)

Example 2: Assume that thermometer readings are normally distributed with a mean of 0°C and a standard deviation of 1.00 °C. A thermometer is randomly selected and tested. In each case, draw a sketch and find the probability of each reading. The given values are in Celsius degrees.

a. Less than -2.75

b. Greater than 2.33

c. Between 1.00 and 3.00

e. Greater than 3.68

d. Between -2.87 and 1.34

USING THE TI-84

FINDING z SCORES WITH KNOWN AREAS

1.	Draw a bell-shaped curve and	the	under the
	that	to the	probability. I f
	that region is not a	region from the	, work instead with
	a known region that is a cumulative r	egion from the	

2.	Using the		_ from the, lo	cate
	the	_ probability in the	of Table A-2 and identify	y the

NOTATION

The expression \mathcal{I}_{α} denotes the *z* score with an area of ______ to its ______.

Example 3: Find the value of $\mathcal{Z}_{.075}$.

Example 4: Assume that thermometer readings are normally distributed with a mean of 0°C and a standard deviation of 1.00 °C. A thermometer is randomly selected and tested. In each case, draw a sketch and find the probability of each reading. The given values are in Celsius degrees.

a. Find the 1st percentile.

b. If 0.5% of the thermometers are rejected because they have readings that are too low and another 0.5% are rejected because they have readings that are too high, find the two readings that are cutoff values separating the rejected thermometers from the others.

6.3 APPLICATIONS OF NORMAL DISTRIBUTIONS

TO STANDARDIZE VALUES USE THE FOLLOWING FORMULA:

STEPS FOR FINDING AREAS WITH A NONSTANDARD NORMAL DISTRIBUTION:

1.	Sketch a	curve, label th	e	_ and the specific
	, then		_ the region representing [.]	the desired
2.	For each relevant value <i>x</i> that	 t is a	for the sha	ided region, convert
	the relevant value to a standa	rdized	·	
3.	Refer to table of the shaded region.	or use a	to find th	e

Example 1: Assume that adults have I Q scores that are normally distributed with a mean of 100 and a standard deviation of 15.

a. Find the probability that a randomly selected adult has an IQ that is less than 115.

b. Find the probability that a randomly selected adult has an IQ greater than 131.5 (the requirement for the Mensa organization).

c. Find the probability that a randomly selected adult has an IQ between 90 and 110 (referred to as the normal range).

d. Find the probability that a randomly selected adult has an IQ between 110 and 120 (referred to as bright normal).

e. Find P_{30} , which is the IQ score separating the bottom 30% from the top 70%.

f. Find the first quartile Q₁, which is the IQ score separating the bottom 25% from the top 75%.

g. Find the third quartile Q_{3} , which is the I Q score separating the top 25% from the others.

h. Find the IQ score separating the top 37% from the others.

FINDING VALUES FROM KNOWN AREAS

1.	Don't confuse	and		Remember,	_ are
		_ along the	_ scale,	but	are
		under the			
2.	Choose the correct	of the		A value separatir	ng the top
	10% from the others	will be located on the		_ side of the graph, but a va	lue
	separating the bottom	n 10% will be located on the		side of the gra	ph.
3.	Α	_must be	wh	nenever it is located in the	
	half	of the	distrib	ution.	

4.	Areas (or) are		or	values, but they
	are never				
Alway	s use graphs to		!!!		
STEPS	S FOR FINDING VALUES US	ING TABLE A-	-2:		
1.	Sketch a	distributio	n curve, enter the	given	
	or	in the appr	opriate	of t	he
	, and	l identify the		being sought.	
2.	Use Table A-2 to find the		_ corresponding t	o the	
	area find the area	5			
3.	Solve for as follows:				
4.	Refer to the	of the	to	o make sure tha	t the solution
	makes	!			

Example: Engineers want to design seats in commercial aircraft so that they are wide enough to fit 99% of all males. Men have hip breadths that are normally distributed with a mean of 14.4 inches and a standard deviation of 1.0 inch. Find the hip breadth for men that separates the smallest 99% from the largest 1 % (aka P_{99}).

6.5	THE CENTRAL LI MI T THEOREM	
Kan Ca		

	y Concept this section, we introduce and apply the
	The central limit theorem tells us that for a
	withdistribution, the
	the approaches a as the sample size approaches a This means
tha	at if the sample size is enough, the of
	can be approximated by a
	, even if the original population is normally
dis	tributed. If the original population has and
	, the of the
	will also be, but the
	of the will
be	, where is the size.
	is essential to know the following principles: For a, if
	, then the sample means have a that can
	be approximated by a and distribution, with mean and
	standard deviation
2.	If and the original population has a distribution, then the
	have a
	distribution with mean and standard deviation
3.	If and the original population does not have a

called the ______ of the mean.

APPLYING THE CENTRAL LIMIT THEOREM

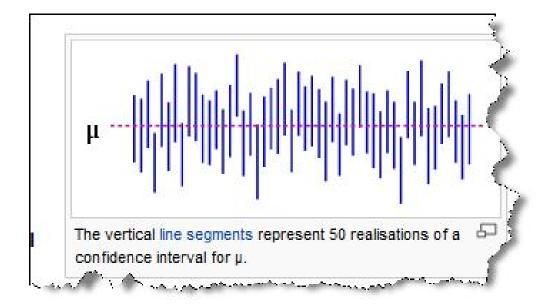
Example 1: Assume that SAT scores are normally distributed with mean $\mu = 1518$ and standard deviation $\sigma = 325$.

a. If 1 SAT score is randomly selected, find the probability that it is between 1440 and 1480.

b. If 16 SAT scores are randomly selected, find the probability that they have a mean between 1440 and 1480.

c. Why can the central limit theorem be used in part (b) even though the sample size does not exceed 30?

Example 2: Engineers must consider the breadths of male heads when designing motorcycle helmets. Men have head breadths that are normally distributed with a mean of 6.0 inches and a standard deviation of 1.0 inch.


a. If one male is randomly selected, find the probability that his head breadth is less than 6.2 inches.

b. The Safeguard Helmet company plans an initial production run of 100 helmets. Find the probability that 100 randomly selected men have a mean head breadth of less than 6.2 inches.

c. The production manager sees the result from part (b) and reasons that all helmets should be made for men with head breadths less than 6.2 inches, because they would fit all but a few men. What is wrong with that reasoning?

7.2 ESTIMATING A POPULATION PROPORTION

DEFINITION	
A point estimate is a	value (or) used to
a	parameter.
The	is the best
of the	·
DEFINITION	
A <u>confidence interval (aka</u>) is a
(or an) of used to
the	value of a
A abbreviated as CI.	is often
DEFINITION	
The confidence level is the	(often expressed as the
equivalent percentage value) that the	actually does
the	, assuming that the
process is	anumber of times. (The
	is also called the of
, or the).

CRITICAL VALUES

The methods of this section (and many others) include a reference to a ______

	that can be used t	0	between	
	that are	to	and t	hose that are
	_ to s	Such a	is called a _	
DEFINITION				
A <u>critical value</u> is	the	on the		_ separating
		that are likel	y to occur from thos	e that are
	to occur. The nu	mber is a		
that is a	with the pro	operty that it	ar	n of
in th	e	_ tail of the		
distribution.				

Example 1: An interesting and popular hypothesis is that individuals can temporarily postpone their death to survive a major holiday or important event such as a birthday. In a study of this phenomenon, it was found that in the week before and the week after Thanksgiving, there were 12,000 total deaths, and 6062 of them occurred in the week before Thanksgiving.

a. What is the best point estimate of the proportion of deaths in the week before Thanksgiving to the total deaths in the week before and the week after Thanksgiving?

b. Construct a 95% confidence interval estimate of the proportion of deaths in the week before Thanksgiving to the total deaths in the week before and the week after Thanksgiving.

c. Based on the result, does there appear to be any indication that people can temporarily postpone their death to survive the Thanksgiving holiday? Why or why not?

Example 2: In a study of 420,095 cell phone users in Denmark, it was found that 135 developed cancer of the brain or nervous system. Prior to this study of cell phone use, the rate of such cancer was found to be 0.0340% for those not using cell phones.

a. Use the sample data to construct a 95% confidence interval estimate of the percentage of cell phone users who develop cancer of the brain or nervous system.

b. Do cell phone users appear to have a rate of cancer of the brain or nervous system that is different from the rate of such cancer among those using cell phones? Why or why not?

DEFINITION

	sample are used to
	, the margin of error , denoted
likely	(with probability)
of the	
of	is also called the
	_ and can be found by
the	of
	as shown in the formula below:
	likely of the of the

ROUND-OFF RULE FOR CONFIDENCE INTERVAL ESTIMATES OF *p*

Round the confidence interval	for to	
··		
DETERMINING SAMPLE SIZE		
Suppose we want to	_ data in order to	_ some
How do we	know how many sample items must be	e obtained? I f we solve the
for	of	_ for, we get the
first formula below. Note that this form	ula requires If no such esti	mate is known, we replace

			TEXTBOOK ESSENTIALS OF STATISTICS, SKD ED.
by	and replace	by	, which is shown in the second formula.
When an estimat	e is known:		
When no estimat	e is known:		
ROUND-OFF RULE FO	R DETERMINING S	AMPLE SIZE	
If the computed sample	size is not a _		, round the value of

____ to the next ______ number.

Example 3: As your text was being written, former NYC mayor Rudolph Giuliani announced that he was a candidate for the presidency of the United States. If you were a campaign worker and needed to determine the percentage of people that recognized his name, how many people should you have surveyed to estimate that percentage? Assume that you wanted to be 95% confident that the sample percentage was in error by no more than 2 percentage points, and also assume that a recent survey indicated that Giuliani's name is recognized by 10% of all adults (based on data from a Gallup poll).

7.3	ESTIMATING A POPULATION MEAN: SIGMA KNOWN Key Concept
	In this section we present methods foraa
	In addition to knowing the values of the data or
	, we must also know the value of the
	Here are three concepts that should be
	learned in this section.

	We should know that the		is the best
		of the	
2.	 We should learn how to use		to construct a
		for	the
	value of a	, and v	we should know how to
	such		
3.	We should develop the ability to	th	ne
		2	
	necessary to	d	
OINT E	necessary to	a	
he		is an	estimator of the
he	 STIMATE	is an , and for many popula	estimator of the ations,
he	 STIMATE	is an , and for many popula er measures of	estimator of the ations,, so the
he	STIMATE	is an , and for many popula er measures of s usually the best	estimator of the ations,, so the
he	STIMATE	is an , and for many popula er measures of s usually the best	estimator of the ations,, so the
The	STIMATE	is an , and for many popula er measures of s usually the best	estimator of the ations,, so the

NORMALITY REQUIREMENT The population must either be	or	If
, the population does not need to have a	that is	
as long as it is		
As long as there are no	and if a	
of the	is not	
different from being, the satisfied.	requirem	ent is
SAMPLE SIZE REQUIREMENT		
The sample size actually depends on how much	1 the	
departs from a		Sample sizes
of to are sufficient if the population has a		
that is not far from, but some other populations h	nave	
that are extremely far from and		
greater than might be necessary.		
CONFIDENCE LEVEL		
The is associated	with a	
, such as or	The	
gives us the	of the	
used to construct the confidence interval. Remember the is the _		of
the		

Example 1: Find the indicated critical value ~ $\mathcal{I}_{\alpha/2}$.

a. Find the critical value that corresponds to a 98% confidence level.

b.
$$\alpha = .04$$

procedure for constructing a confidence interval for $\,\mu\,$ with known $\,\sigma\,.$

1.	Verify that the		_are		
2.	Refer to table	or use	to find t	he	
		that cor	responds to the desired		
3.	Evaluate the	of			·
4.	Using the value of the			_ of	
	and the value of the				, find the values
	of the				_:
	and		Substitute those value	s in the _	
	for the _				
	or	or			

5. Round the resulting values by using the following round-off rule.

round-off rule for confidence intervals used to estimate $\,\mu$

1.	When using the	set of to _	
	a confidence	, round the	_
		to	
		place than is used for the	set of data.
2.	When the	set of data is	and only the
		() are used, ro	ound the
		limits to the same	number of digits as the
		_ mean.	

Example 2: A simple random sample of 40 salaries of NCAA football coaches has a mean of \$415,953. Assume that $\sigma = $463,364$.

- a. Find the best point estimate of the mean salary of all NCAA football coaches.
- b. Construct a 95% confidence interval estimate of the mean salary of an NCAA football coach.

c. Does the confidence interval contain the actual population mean of \$474,477?

Example 3: Polling organizations typically generate the last digits of telephone numbers so that people with unlisted numbers are included. Listed below are digits randomly generated by STATDISK. Such generated digits are from a population with a standard deviation of 2.87.

- 1 1 7 0 7 4 5 1 7 6
- a. Use the methods of this section to construct a 95% confidence interval estimate of the mean of all such generated digits.

b. Are the requirements for the methods of this section all satisfied? Does the confidence interval from part (a) serve as a good estimate for the population mean? Explain.

FINDING THE SAMPLE SIZE REQUIRED TO ESTIMATE A POPULATION MEAN

Objective:

Notation:

Requirements:

ROUND-OFF RULE FOR SAMPLE SIZE *n*

If the	sample size is a	, round
the value of	_ to the next	·

Example 4: A researcher wants to estimate the mean grade point average of all current college students in the United States. She has developed a procedure to standardize scores from colleges using something other than a scale from 0 and 4. How many grade point averages must be obtained so that the sample mean is within 0.1 of the population mean. Assume that a 90% confidence level is desired. Also assume that a pilot study showed that the population standard deviation is estimated to be 0.88.

ESTIMATING A POPULATION MEAN: SIGMA NOT KNOWN Key Concept		
2	s for a	
when	the population	
is not known. With	unknown, we use the	
inste	ead of a	
assuming the relevant	are satisfied. The	
	was developed by William Gosset (1876-1937). William	
Gosset was a Guinness Brewery emp	ployee. He needed a distribution that could be used with small	
samples. The brewery where he wo	rked did not the publication of research results so he	
published under the pseudonym "	". In real circumstances,	

is typically	, which makes the	methods of this section
an	d	
POINT ESTIMATE		
The		estimator of the
STUDENT t DISTRIBUTION	·	
If a population has a	ion has a distribution, then the distribution	
s a		for
all samples of size A		is referred to as a
it with the value of		
	_, but this introduces anoth	er source of
especially with	In orde	r to maintain a desired
	, we compensate	e for this additional unreliability by
making the		: we use
	that are	than the
	of	from the
A		of can be found
using or		

DEFINITION

The number of <u>degrees of freedom</u> for a collection of is			
the of	that can		
after certain restrictions have been	on all data values. The number of		
of	is often abbreviated as		
For example: If 10 students have quiz scores with a mean of 80, we can freely assign values to the first			
scores, but the	_ score is then The		
of the 10 scores must be	so thescore must be		
the	of the scores.		
Because the first 9 scores can be	selected to any values, we say there		
are (of		
For the app	lications of this section, the number of degrees of		
freedom is simply the			

Example 1: A sample size of 21 is a simple random sample selected from a normally distributed population. Find the critical value $t_{\alpha/2}$ corresponding to a 95% confidence level.

1.	Verify that the	are	· · · · · · · · · · · · · · · · · · ·		
2.	Using	of	, refer to table		
	or use	to find the	e		
	that corresponds to the desired				
	F	or the	,		
	refer to the "	in	<u> </u>		
3.	Evaluate the	of			
4.	Using the value of the		of		
	and the value of the		, find the values		
	of the		:		
	and	Substitut	e those values in the		
	for	the	·		
5.	Round the resulting values	by using the following round-off	frule.		
ROUN	ID-OFF RULE FOR CONFI	DENCE INTERVALS USED TO	ESTIMATE μ		
1.	When using the	set of	to		
	a confidence	, round the			
	to		place than is used for		
	the	set of data.			
2.	When the	set of data is	and only the		
) are used	d, round the		
			igits as the mean.		

Example 2: In a study designed to test the effectiveness of acupuncture for treating migraine, 142 subjects were treated with acupuncture and 80 subjects were given a sham treatment. The numbers of migraine attacks for the acupuncture treatment group had a mean of 1.8 and a standard deviation of 1.4. The numbers of migraine attacks for the sham treatment group had a mean of 1.6 and a standard deviation of 1.2.

a. Construct a 95% confidence interval estimate of the mean number of migraine attacks for those treated with acupuncture.

b. Construct a 95% confidence interval estimate of the mean number of migraine attacks for those given a sham treatment.

c. Compare the two confidence intervals. What do the results suggest about the effectiveness of acupuncture?

IMPORTANT PROPERTIES OF THE STUDENT *t* DISTRIBUTION

1.	The Student <i>t</i> distribution is for different	
2.	The Student <i>t</i> distribution has the general	
	as the distribution, but it reflects the greater	
	distributions) that is expected of	
3.	 The Student <i>t</i> distribution has a mean of (just as the	
	distribution has a mean of).	
4.	The standard with the	
	size, but is than (unlike the	
	distribution, which has).	
5.	As the, the Student t	
	distribution gets to the	
	$ \begin{array}{c} 0.40\\ 0.35\\ 0.30\\ 0.25\\ 0.20\\ 0.15\\ 0.10\\ 0.05\\ 0.00\\ -4\\ -2\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	

CHOOSING THE APPROPRIATE DISTRIBUTION

It is sometimes difficult to decide whether to use the						
or the						
·						
METHOD	CONDITIONS					
Use normal (z) distribution	σ and distributed population or σ known and					
Use <i>t</i> distribution	σ and distributed population or and and					
Use a nonparametric method or bootstrapping	Population is distributed and					

Example 3: Choosing distributions. You plan to construct a confidence interval for the population mean μ . Use the given data to determine whether the margin of error *E* should be calculated using a critical

value of $z_{\sigma/2}$ from the normal distribution, $t_{\sigma/2}$ from a *t* distribution, or neither (methods of this chapter cannot be used).

a. n = 7, $\overline{x} = 80$, s = 8, and the population has a very skewed distribution

d.
$$n=13, \ \overline{x}=5, \ \sigma=3$$
 , and the population has a normal distribution

- b. $n=150, \ \overline{x}=23.5, \ \sigma=0.2$, and the population has a skewed distribution
- e. n = 92, $\overline{x} = 20.7$, s = 2.5, and the population has a skewed distribution
- c. n = 10, $\overline{x} = 65$, s = 12, and the population has a normal distribution

FINDING A POINT ESTIMATE AND E FROM A CONFIDENCE INTERVAL

The		is the value	
between the			·
The of		is	the
be	etween those	·	
Point estimate of $\mu_{:}$		Margin of error:	
USING CONFIDENCE INTERV	ALS TO DESCRIBE	, EXPLORE, OR COMPA	RE DATA
In some cases, we might use a _			to achieve an ultimate
goal of	the	ofa	
	. In other cases,		
might be among the different _		used to	
, or		data sets. When tw	o or more data sets have
	confidence inte	ervals, one could	
conclude that there does not ap	pear to be a significa	nt difference between t	he estimated

TI-83/84 PLUS

Example 4: In a sample of seven cars, each car was tested for nitrogen-oxide emissions (in grams per mile) and the following results were obtained: 0.06, 0.11, 0.16, 0.15, 0.14, 0.08, 0.15 (based on data from the EPA).

a. Assuming that this sample is representative of the cars in use, construct a 98% confidence interval estimate of the mean amount of nitrogen-oxide emissions for all cars.

b. If the EPA requires that nitrogen-oxide emissions be less than 0.165 g/mi, can we safely conclude that this requirement is being met?

Example 5: Listed below are 12 lengths (in minutes) of randomly selected movies from Data Set 9 in Appendix B.

110	96	125	94	132	120	136	154	149	94	119	132
-----	----	-----	----	-----	-----	-----	-----	-----	----	-----	-----

a. Construct a 99% confidence interval estimate of the mean length of all movies.

b. Assuming that it takes 30 minutes to empty a theater after a movie, clean it, allow time for the next audience to enter, and show previews, what is the minimum time that a theater manager should plan between start times of movies, assuming that this time will be sufficient for typical movies?

8.1 REVIEW AND PREVIEW

DEFINITION

In statistics, a hypothesis is a or	about a
of the	
A hypothesis test (ske test of significance) is a	for torting o
A hypothesis test (aka test of significance) is a	for testing a
about a	of a
8.2 BASICS OF HYPOTHESIS TESTING	
PART 1: BASICS CONCEPTS OF HYPOTHESIS TESTI	NG
The methods presented in this chapter are based on the _	for
RARE EVENT RULE FOR INFERENTIAL STATISTICS	
If, under a given assumption, the	of a particular observed is extremely
, we conclude that the	is probably not
WORKING WITH THE STATED CLAIM: NULL AND AL	TERNATIVE HYPOTHESES
The null hypothesis denoted by is a	that the value of a
	is to some
value. The term is used t	0
or	or
The <u>alternative hypothesis</u> denoted by or	or is the
that the has a value that some	now from the
·	

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

For the method	ls of this chapter, the		form of the
	must use one o	f these symbols:	!!
IDENTIFYING	AND		
STA	RT		
	Identify the specific or Express it in	_ to be tested	
2	Give the symbolic form		when the
	Using the two obtained so far, identify	y the	_ expressions
3	• is the symbol contain _	olic expression that _	
		the	value being
		_	

Example 1: Examine the given statement, then express the null hypothesis and the alternative hypothesis in symbolic form.

- a. The majority of college students have credit cards.
- b. The mean weight of plastic discarded by households in one week is less than 1 kg.

CONVERTING SAMPLE DATA TO A TEST STATISTIC

Test statistic for proportion:

Test statistic for mean:

Example 2: Find the value of the test statistic. The claim is that less than ½ of adults in the United States have carbon monoxide detectors. A KRC Research survey of 1005 adults resulted in 462 who have carbon monoxide detectors.

TOOLS FOR ASSESSING THE TEST STATISTIC: CRITICAL REGION, SIGNIFICANCE LEVEL, CRITICAL VALUE, AND *P*-VALUE

The		alone u	isually	give us enough
information to make	e a decision about the	being	l	The following tools
can be used to	and		the	
π	The <u>critical region (aka</u>	rejection regio	on) is the	of all
	of the			that cause us to
π	The <u>significance level (d</u>			
			will fall in t	he
	W	hen the		is
	actually If the _			falls in the
			, we	the
			, so	_ is the
	0	of making the _		of
	the		when it is	·
π	A <u>critical value</u> is any val	ue that		the
		from the		_ of the
	that _		lead to _	
	of the		The	9
		depend on the	e nature of the	

,	the	t	hat

applies, and the ______ of _____. The procedure

can be summarized as follows:

Critical region in the left tail:

Critical region in the right tail:

Critical region in two tails:

π	The P-value (aka p-value or probability value) is t	he of
	getting a of the	that
	is	_ as the one representing the
	, assuming that the _	
	is <i>P</i> -values can be found	finding the
	the	·

DECISIONS AND CONCLUSIONS

P-value method:	Using the			:	
	lf <i>P</i> -value	9			
	lf <i>P</i> -value	e	,to _		
Traditional method:	If the			falls	the
					If the
				fa	III
	the			to	
Confidence intervals	: A				of a
				contains the	
	values of	that		.lfa	
		d	0es		а
		value of a	I		
		that _		_·	

Example 3: Use the given information to find *P*-value.

a. The test statistic in a right-tailed test is z = 2.50

b. The test statistic in a two-tailed test is z = -0.55

c. With
$$H_1: p \neq \frac{3}{4}$$
, the test statistic is $z = 0.35$

d. With H_1 : p < 0.777, the test statistic is z = -2.95

Example 4: State the final conclusion in simple non-technical terms. Be sure to address the original claim. Original claim: The percentage of on-time U.S. airline flights is less than 75%. Initial conclusion: Reject the null hypothesis.

		TRUE STA	TE OF NATURE
		THE NULL HYPOTHESIS IS TRUE	THE NULL HYPOTHESIS IS FALSE
DECISION	We decide to reject $m{H}_0$	TYPE I ERROR	CORRECT DECI SI ON
	We fail to reject $oldsymbol{H}_{0}$	CORRECT DECISION	TYPE I I ERROR

ERRORS IN HYPOTHESIS TESTS

Example 5: I dentify the type I error and the type II error that correspond to the given hypothesis. The percentage of Americans who believe that life exists only on earth is equal to 20%.

COMPREHENSIVE HYPOTHESIS TEST

CONFIDENCE INTERVAL METHOD

For	_ hypothesis tests		a	interval with a
		of	; but for a	
hypothesis test with _			, C(onstruct a
	0	ıf		
A				_ofa
	contains t	the	values of the	at parameter. We should

therefore ______ a _____ that the population parameter has a ______

8.3 TESTING A CLAIM ABOUT A PROPORTION

PART 1: BASIC METHODS OF TESTING CLAIMS ABOUT A POPULATION PROPORTION p

OBJECTIVE				_
NOTATION				
<i>n</i> =		<i>p</i> =		
<i>p̂</i> =		q =		
REQUIREMENTS				
1. The	observations are a			
sample.				
	for a		are	
satisfied.				
3. The conditions	and	are	satisfied so the	
	of	_ proportions can	be	by a
	with	and	Note tl	nat is the
	US	ed in the		

TEST STATISTIC FOR TESTING A CLAIM ABOUT A PROPORTION		
<i>z</i> =	<i>P</i> – values:	
	Critical values:	
FINDING THE NUMBER OF SUCCESSES x		

Computer software and	designed for	tests of	
usually require	consisting of the		and the
number of	, but the		is often given
instead of			

Example 1: I dentify the indicated values. Use the normal distribution as an approximation to the binomial distribution. In a survey, 1864 out of 2246 randomly selected adults in the United States said that texting while driving should be illegal (based on data from Zogby International). Consider a hypothesis test that uses a 0.05 significance level to test the claim that more than 80% of adults believe that texting while driving should be illegal.

a. What is the test statistic?

b. What is the critical value?

c. What is the P-value?

d. What is the conclusion?

Example 2: The company Drug Test Success provides a "1-Panel-THC" test for marijuana usage. Among 300 tested subjects, results from 27 subjects were wrong (either a false positive or a false negative). Use a 0.05 significance level to test the claim that less than 10% of the test results are wrong. Does the test appear to be good for most purposes?

- a. I dentify the null hypothesis
- b. I dentify the alternative hypothesis

c. I dentify the test statistic

d. I dentify the *P*-value or critical value(s)

e. What is your final conclusion?

Example 3: In recent years, the town of Newport experienced an arrest rate of 25% for robberies (based on FBI data). The new sheriff compiles records showing that among 30 recent robberies, the arrest rate is 30%, so she claims that her arrest rate is greater than the 25% rate in the past. Is there sufficient evidence to support her claim that the arrest rate is greater than 25%?

- a. I dentify the null hypothesis
- b. I dentify the alternative hypothesis

c. I dentify the test statistic

d. I dentify the *P*-value or critical value(s)

e. What is your final conclusion?

8.4 TESTING A CLAIM ABOUT A MEAN: SIGMA KNOWN

TESTING CLAIMS ABOUT A POPULATION MEAN (WITH σ KNOWN) OBJECTIVE

NOTATION

<i>n</i> =	$\mu_{\overline{x}} =$	
$\overline{x} =$	σ =	
REQUIREMENTS		
1. The is a		
().		
2. The of the		
is		
3. The is		and/or
TEST STATISTIC FOR TESTING A CLAIM A	BOUT A MEAN (WITH σ KN	IOWN)
<i>z</i> =	P-values:	
	Critical values:	

Example 1: When a fair die is rolled many times, the outcomes of 1, 2, 3, 4, 5, and 6 are equally likely, so the mean of the outcomes should be 3.5. The author drilled holes into a die and loaded it by inserting lead weights, then rolled it 40 times to obtain a mean of 2.9375. Assume that the standard deviation of the outcomes is 1.7078, which is the standard deviation for a fair die. Use a 0.05 significance level to test the claim that outcomes from the loaded die have a mean different from the value of 3.5 expected with a fair die.

a. Identify the null hypothesis

b. I dentify the alternative hypothesis

c. I dentify the test statistic

d. I dentify the *P*-value or critical value(s)

e. What is your final conclusion?

Example 2: Listed below are recorded speeds (in mi/h) of randomly selected cars traveling on a section of Highway 405 in Los Angeles (based on data from Sigalert). That part of the highway has a posted speed limit of 65 mi/h. Assume that the standard deviation of speeds is 5.7 mi/h and use a 0.01 significance level to test the claim that the sample data is from a population with a mean greater than 65 mi/h.

 68
 68
 72
 73
 65
 74
 73
 72
 68
 65
 73
 66
 71
 68
 74
 66
 71
 65
 73

 59
 75
 70
 56
 66
 75
 68
 75
 62
 72
 60
 73
 61
 75
 58
 74
 60
 73
 58
 75

a. I dentify the null hypothesis

b. I dentify the alternative hypothesis

c. I dentify the test statistic

d. I dentify the *P*-value or critical value(s)

e. What is your final conclusion?

8.5 TESTING A CLAIM ABOUT A MEAN: SIGMA NOT KNOWN

TESTING CLAIMS ABOUT A	POPULATION MEAN (WITH σ NOT KNOWN)	
OBJECTIVE		
NOTATION		
n =	$\mu_{\overline{x}} =$	
	$m_{\overline{x}}$	
$\overline{x} =$	s =	
REQUIREMENTS		
1. The is	s a	
()		
\ <i>)</i> .		
2. The	_ of the	
	i.	
	is	
3. The	is	_ and/or
·		

TEST STATISTIC FOR TESTING A CLAIM ABOUT A MEAN (WITH σ known)		
t = $P - values:$		
Critical values:		
CHOOSING THE CORRECT METHOD		
When a about a, first be sure		
that the sample data have been collected with an appropriate method. If we		
have a, a test		
of a about might use the,		
the distribution, or it might require		
methods or resampling techniques.		
To test a about a , use the		
when the sample is a		
, is		
, and or of these conditions is satisfied:		
The is distributed or		

Example 1: Determine whether the hypothesis test involves a sampling distribution of means that is a normal distribution, Student *t* distribution, or neither.

a. Claim about FICO credit scores of adults: $\mu = 678$, n = 12, $\overline{x} = 719$, s = 92. The sample data appear to come from a population with a distribution that is not normal and σ is not known.

b. Claim about daily rainfall amounts in Boston:

 $\mu < 0.20$ in., n = 52, $\overline{x} = 0.10$ in., s = 0.26 in. The sample data appear to come from a population with a distribution that is very far from normal, and σ is known.

FINDING P-VALUES WITH THE STUDENT t DISTRIBUTION

1.	Use software or a		
2.	If is not available,	use Table A-3 to identify	a of
	as follows: Use the number of	0f	to
	the row of [*]	Table A-3, then determine	e where the
	lies t	o the	in that
	Based on a comparison of the		and the
	in the row of Table A-3,	a	Of
	by referring to the		given at the
	of Table A-3.		

Example 2: Either use technology to find the *P*-value or use Table A-3 to find a range of values for the *P*-value.

- a. Movie Viewer Ratings: Two-tailed test with n = 15, and test statistic t = 1.495.
- b. Body Temperatures: Test a claim about the mean body temperature of healthy adults. Left-tailed test with n = 11 and test statistic t = -3.518.

Example 3: Assume that a SRS has been selected from a normally distributed population and test the given claim. A SRS of 40 recorded speeds (in mi/h) is observed from cars traveling on a section of Highway 405 in Los Angeles. The sample has a mean of 68.4 mi/h and a standard deviation of 5.7 mi/h (based on data from Sigalert). Use a 0.05 significance level to test the claim that the mean speed of all cars is greater that the posted speed limit of 65 mi/h.

a. I dentify the null hypothesis

b. Identify the alternative hypothesis

- c. I dentify the test statistic
- d. I dentify the *P*-value or critical value(s)

e. What is your final conclusion?

Example 2: Assume that a SRS has been selected from a normally distributed population and test the given claim. The trend of thinner Miss America winners has generated charges that the contest encourages unhealthy diet habits among young women. Listed below are body mass indexes (BMI) of recent Miss America winners. Use a 0.01 significance level to test the claim that recent Miss America winners are from a population with a mean BMI less than 20.16, which was the BMI for winners from the 1920s and 1930s.

 $19.5 \quad 20.3 \quad 19.6 \quad 20.2 \quad 17.8 \quad 17.9 \quad 19.1 \quad 18.8 \quad 17.6 \quad 16.8$

a. I dentify the null hypothesis

b. Identify the alternative hypothesis

c. I dentify the test statistic

d. I dentify the *P*-value or critical value(s)

e. What is your final conclusion?

9.2 INFERENCES ABOUT TWO PROPORTIONS

OBJECTIVES	
NOTATION FOR TWO PROPORTIONS	
$p_1 =$	$\hat{p}_1 =$
A 1	* 1
	^
$n_1 =$	$\hat{q}_1 =$
$x_1 =$	The corresponding notations
	p_2, n_2, x_2, \hat{p}_2 , and \hat{q}_2 apply to
	population 2.
POOLED SAMPLE PROPORTION	
The	is
device a large stand in strengthere	
denoted by and is given by:	
REQUIREMENTS	
1. The	are from
samples that are	
	·
2. For each of the samples, the numb	oer of is
and the number of	is at That is,
and fo	or each of the two samples.

TEST STATISTIC FOR TWO PROPORTIONS (WITH H_0 : $p_1 = p_2$)		
<i>z</i> =		
<i>P</i> – value:		
Critical values:		
CONFIDENCE INTERVAL ESTIMATE OF $p_1 = p_2$		
The confidence interval estimate of the	is [,]	
where the of is given by		
Rounding: Round the confidence interval limits to significant digits.		
CAUTION!!! When testing a claim about population proportions,	the	
method and the method are equivalent, but they		
equivalent to the	_ method!!! If you	
want to a claim about	/	

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

use the method or the	method; if you want to
the	between
, use a	

Example 1: In a 1993 survey of 560 college students, 171 said they used illegal drugs during the previous year. In a recent survey of 720 college students, 263 said that they used illegal drugs during the previous year (based on data from the National Center for Addiction and Substance Abuse at Colombia University). Use a 0.05 significance level to test the claim that the proportion of college students using illegal drugs in 1993 was less than it is now.

Example 2: Among 2739 female atom bomb survivors, 1397 developed thyroid diseases. Among 1352 male atom bomb survivors, 436 developed thyroid diseases (based on data from "Radiation Dose-Response Relationships for Thyroid Nodules and Autoimmune Thyroid Diseases in Hiroshima and Nagasaki Atomic Bomb Survivors 55-58 Years After Radiation Exposure," by I maizumi, et al., *Journal of the American Medical Association*, Vol. 295, No. 9).

a. Use a 0.01 significance level to test the claim that the female survivors and male survivors have different rates of thyroid diseases.

b. Construct the confidence interval corresponding to the hypothesis test conducted with a 0.01 significance level.

c. What conclusion does the confidence interval suggest?

9.3 INFERENCES ABOUT TWO MEANS: INDEPENDENT SAMPLES

Independent samples with $\sigma_{\! 1}$ and $\sigma_{\! 2}$ unknown and not assumed equal definition

Two	_ are independent if the	
from one population		or somehow
	or	_ with the
from the other population.		
Two are <u>dependent</u> if the sample values are		

Inferences about Means of Two Independent	nt Populations,	With σ	\overline{r}_1 and	$\sigma_{_2}$	Unknown and Not	
Assumed to be Equal						
NOTATION						
NOTATION						
Population 1:						
$\mu_1 =$	$s_1 =$					
$\sigma_{_1}$						
$\overline{x}_1 =$	$n_1 =$					
1	1					
The corresponding notations for,	///	,and _	8	apply	to population	
						_
REQUIREMENTS						

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

1 and are a	and it is not	that	and	are
 2. The samples are				
3. Both samples are				
4. Either or both of these conditions are sat	isfied: The two		ar	e both
(with and) or both samples com	e from populat	ions having	
HYPOTHESIS TEST STATISTIC FOR TWO	MEANS: INDEPENDE	NT SAMPLES		
<i>t</i> =				
Degrees of Freedom: When finding		or		
, use the following for deter	rmining the number of de	egrees of		
freedom.				
1. In this book we use the conservative estim	ate: df = o	f		
and				
 Statistical software packages typically use below: 			estimate give	n
df = $\frac{(A+B)^2}{\frac{A^2}{n_1-1} + \frac{B^2}{n_2-1}}$,	$A = \frac{s_1^2}{n_1}, B = \frac{s_1}{n_1}$	n_2^2		
P-values and critical values: Use Table A-3.				

CONFIDENCE INTERVAL ESTIMATE OF $\mu_1 - \mu_2$: INDEPENDENT SAMPLES				
The confidence interval estimate of the difference is				
and the number of degrees of freedom df is as described above for hypothesis tests.				

EQUIVALENCE OF METHODS

Example 1: Determine whether the samples are independent or dependent.

a. To test the effectiveness of Lipitor, cholesterol levels are measured in 250 subjects before and after Lipitor treatments.

b. On each of 40 different days, the author measured the voltage supplied to his home and he also measured the voltage produced by his gasoline powered generator.

Example 2: Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. A simple random sample of 13 four-cylinder cars is obtained, and the braking distances are measured. The mean braking distance is 137.5 feet and the standard deviation is 5.8 feet. A SRS of 12 six-cylinder cars is obtained and the braking distances have a mean of 136.3 feet with a standard deviation of 9.7 feet (based on Data Set 16 in Appendix B).

a. Construct a 90% CI estimate of the difference between the mean braking distance of fourcylinder cars and six-cylinder cars.

b. Does there appear to be a difference between the two means?

c. Use a 0.05 significance level to test the claim that the mean braking distance of four-cylinder cars is greater than the mean braking distance of six-cylinder cars.

TI-83/84 PLUS

involving the	of the	of the of
two	With	samples, there is
some	whereby each value in one sa	ample is with a
	value in the other sample. Here are t	two typical
examples of depende	nt samples:	
π Each pair of sa subject	ample values consists of two measure	ments from the
π Each pair of s	ample values consists of a	
Because the hypothe	sis test and CI use the same	and
, th	ey are in the sense	e that they result in the
	Consequently, t	the hypothesis th
the		can be tested by determin
whether the	ir	ncludes There are no exac

NOTATION d = s_d = µ_d d = n = REOUIREMENTS 1. The	Inferences about Means of Two Dependent Populations
μ d̄ = n = REQUIREMENTS 1. The data are 2. The samples are 2. The samples are 3. Either or both of these conditions are satisfied: The number of 3. Either or both of these conditions are satisfied: The number of of is () or the pairs of values have that are from a population that is approximately HYPOTHESIS TEST FOR DEPENDENT SAMPLES t = Degrees of Freedom: P-values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	NOTATION
\vec{d} n = REQUIREMENTS 1. The data are 2. The samples are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is	$d = s_d =$
\vec{d} n = REQUIREMENTS 1. The data are 2. The samples are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is	
\vec{d} n = REQUIREMENTS 1. The data are 2. The samples are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is	
REQUIREMENTS 1. The data are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is () or the pairs of values have that are from a population that is approximately HYPOTHESIS TEST FOR DEPENDENT SAMPLES t = Degrees of Freedom:	μ_d
REQUIREMENTS 1. The data are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is () or the pairs of values have that are from a population that is approximately HYPOTHESIS TEST FOR DEPENDENT SAMPLES t = Degrees of Freedom:	
1. The data are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is of is or the pairs of values have that are from a population that is approximately HYPOTHESIS TEST FOR DEPENDENT SAMPLES t = Degrees of Freedom:	d = n =
1. The data are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is of is or the pairs of values have that are from a population that is approximately HYPOTHESIS TEST FOR DEPENDENT SAMPLES t = Degrees of Freedom:	
1. The data are 2. The samples are 3. Either or both of these conditions are satisfied: The number of of is of is or the pairs of values have that are from a population that is approximately HYPOTHESIS TEST FOR DEPENDENT SAMPLES t = Degrees of Freedom:	DECLUDEMENTS
2. The samples are	
3. Either or both of these conditions are satisfied: The number of	
of is	2. The samples are
of is	
have that are from a population that is approximately	3. Either or both of these conditions are satisfied: The number of
have that are from a population that is approximately	of is () or the pairs of values
HYPOTHESIS TEST FOR DEPENDENT SAMPLES t = Degrees of Freedom: P-values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	
t =	have that are from a population that is approximately
t =	
t =	
Degrees of Freedom: <i>P</i> -values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	HYPOTHESIS TEST FOR DEPENDENT SAMPLES
Degrees of Freedom: <i>P</i> -values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	
Degrees of Freedom: <i>P</i> -values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	<i>t</i> –
P-values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	
P-values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	
P-values and critical values: Use Table A-3. CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	
CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	
whore	
whore	
whore	
	where
and	and

Example 1: Assume that the paired sample data are SRSs and that the differences have a distribution that is approximately normal.

a. Listed below are BMIs of college students.

April BMI	20.15	19.24	20.77	23.85	21.32
September BMI	20.68	19.48	19.59	24.57	20.96

i. Use a 0.05 significance level to test the claim that the mean change in BMI for all students is equal to 0.

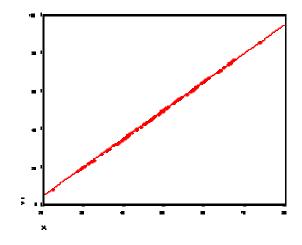
ii. Construct a 95% CI estimate of the change in BMI during freshman year.

iii. Does the CI include zero, and what does that suggest about BMI during freshman year?

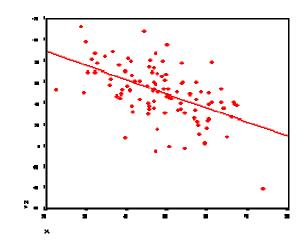
b. Listed below are systolic blood pressure measurements (mm Hg) taken from the right and left arms of the same woman. Use a 0.05 significance level to test for a difference between the measurements from the two arms. What do you conclude?

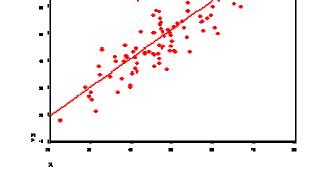
Right arm	102	101	94	79	79
Left arm	175	169	182	146	144

10.2 CORRELATION

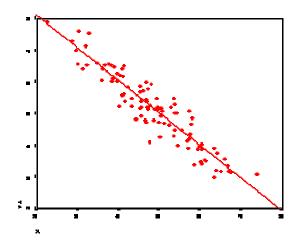

DEFINITION

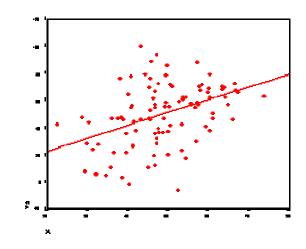
A correlation exists between two	when the	_ of one variable are
somehow	with the values of the other variable.	

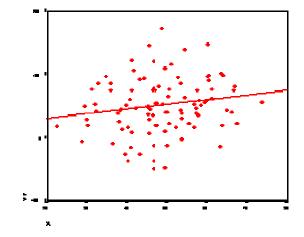

EXPLORING THE DATA

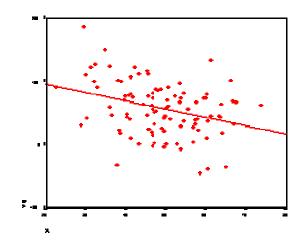

r = 1.00

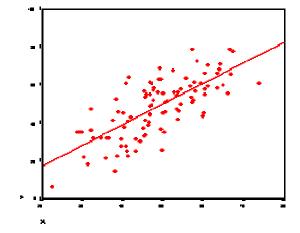
r = .85




r = -.54







r =- .17

DEFINITION

The linear correlation coefficient r me	easures the of the
between the	and
in a	The linear correlation coefficient is sometimes referred to as
the	
in honor of Karl	Pearson who originally developed it. Because the linear
coefficient	_ is calculated using data, it is a
	If we had every pair of values, it
CREATED BY SHANNON MARTIN GRACEY	1/17

would be represented by _____ (Greek letter rho).

OBJECTIVE	
NOTATION FOR THE LINEAR CORRE	
<i>n</i> =	$(\Sigma x)^2 =$
n -	(2x) =
$\Sigma =$	$\Sigma xy =$
$\Sigma x =$	r =
$\Sigma x^2 =$	2 –
$\Delta x =$	$\rho =$
REQUIREMENTS 1Theof	data is a SRS of
data.	
a straight-line	must confirm that the points
3. Because results can be	affected by the presence of,
any must b	be if they are known to be
The effects of any other	should be considered by calculating with and without
the included.	

FORMULAS FOR CALCULATING r
<i>r</i> =
<i>r</i> =
where is the for the sample value and is the for the sample value
INTERPRETING THE LINEAR CORRELATION COEFFICIENT r
Computer Software
If the computed from is less than or equal to the
, conclude that there is a correlation. Otherwise, there is not
of linear
Table A-5 If the, exceeds the value in Table A-5,
conclude that there is a correlation. Otherwise, there is not sufficient evidence to
the conclusion of a linear correlation.

ROUNDING THE LINEAR CORRELATION COEFFICIENT r

Round	the			to	decimal
places	so that its value can be com	pared to critical value	es in Table A-5. Keep	as many decir	mal places
during	the process and then	at the end.			
PROPE	RTIES OF THE LINEAR C	ORRELATION COEF	FICIENT r		
1.	The value of is always	between and _	inclusive. That is		
2.	If all values of	variable are	to a d	different	
	the value of	change).		
3.	The value of is	affected by the ch	noice of or	_·	
4.	measures the	of a	relations	ship. It is not	t designed to
	measure the strength of a		_ that is lin	ear.	
5.	is very sensitive to _	in the	sense that a	outlie	r can
		affect its value.			
COMN	ION ERRORS INVOLVING	CORRELATION			
1.	A common	is to	that		implies
	·				
2.	Another error arises with c	lata based on	Average		
	variat	tion and may	the		
	·				
3.	A third error involves the p	roperty of	If there is	s no linear	
	there might be some other	tha	it is not	·	

Example 2: The paired values of the CPI and the cost of a slice of pizza are listed below.

СРІ	30.2	48.3	112.3	162.2	191.9	197.8
Cost of Pizza	0.15	0.35	1.00	1.25	1.75	2.00

a. Construct a scatterplot

b. Find the value of the linear correlation coefficient *r*

- c. Find the critical values of *r* from Table A-5 using a significance level of 0.05.
- d. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables.

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

10.3 INFERENCES ABOUT TWO MEANS: INDEPENDENT SAMPLES

PART 1: BASIC CONCEPTS OF REGRESSION

	Two variables a	are sometimes re	elated in a		way, meaning t	hat given a
	value for one v	ariable, the	of the	e other variable is _		
	determined wit	thout any	, as in th	e equation $y = 6x$	+5. Statistics of	courses focus
	on		models, which	are equations with	n a variable that	is not
		comple	etely by the other	variable.		
DEFII	TION					
Given a	a collection of _		sample data,	the regression equ	ation	
algebr	aically describe	s the	be	tween the two varia	ables and _	The
	of	the	equation is	called the <u>regress</u>	sion line (aka line	<u>e of best it,</u>
or leas	st-squares line). The regression	n equation express	es a relationship be	etween the	
variab	le (aka		_ variable or	,	variable) and	(called
the		_ variable, or		variable). The s	slope and y-inter	cept can be
found	using the follow	ing formulas:				

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

The line fits the points!
OBJECTIVE
NOTATION
Population Parameter Sample Statistic
y-intercept of regression equation
Slope of regression equation
Equation of the regression line
REQUIREMENTS
1.The of data is a SRS of data.
2. Visual examination of the must confirm that the points
a straight-line
3. Because results can be affected by the presence of,
any must be if they are known to be
should be considered by calculating
with and without the included.
FORMULAS FOR FINDING THE SLOPE AND y-INTERCEPT IN
THE REGRESSION EQUATION

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

Slope:
where is the correlation coefficient, is the of the values, and is the standard deviation of the values
<i>y</i> -intercept:
ROUNDING THE SLOPE AND THE y-INTERCEPT
Round and to
USING THE REGRESSION EQUATION FOR PREDICTIONS 1. Use the regression equation for only if the of the
line on the confirms that the
the points reasonably well. 2. Use the regression equation for only if the correlation
coefficient indicates that there is a correlation between the two variables.
3. Use the regression line for predictions only if the do not go much
the of the available data.
4. If the regression equation does not appear to be for making,

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

the best ______ value is its ______ estimate, which is its

Example 1: The paired values of the CPI and the cost of a slice of pizza are listed below.

_.

CPI	30.2	48.3	112.3	162.2	191.9	197.8
Cost of Pizza	0.15	0.35	1.00	1.25	1.75	2.00

a. Find the regression equation, letting the first variable be the predictor (x) variable.

b. Find the best predicted cost of a slice of pizza when the CPI is 182.5.

PART 2: BEYOND THE BASICS OF REGRESSION

DEFINITION

In working with two variables by a regression equation, the <u>marginal change</u> in a
is the that it changes when the other variable changes by
exactly unit. The slope in the regression equation represents the
in that occurs when changes by unit.

DEFINITION

In a	, an outlier is a point lying away from th	e other data points. Paired
sample data may include or	ne or more influential points , which are	that
affect the of	[•] the	

DEFINITION

For a pair of sample and values, the residual is the				
between the sample value of and the that is				
equation. That is,				
Residual = = =				

DEFINITION

A line satisfies the least-squares property if the of					
their	is the	_ sum possible.			

DEFINITION

A residual plot is a	of the values af	ter each
of the values ha	is been l	by the
value	That is, a residual plot is a gr	aph of
the points		