MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the indicated critical z value.

1) Find the value of $-z_{\alpha / 2}$ that corresponds to a confidence level of 96.68%.
2) \qquad
A) -1.84
B) 2.13
C) -2.13
D) 0.0166
3) Find the critical value $z_{\alpha / 2}$ that corresponds to a 98% confidence level.
A) 1.75
B) 2.575
C) 2.05
D) 2.33
4) Find the value of $-z_{\alpha / 2}$ that corresponds to a confidence level of 96.68%.
A) -1.84
B) 0.0166
C) -2.13
D) 2.13
5) Find the critical value $z_{\alpha / 2}$ that corresponds to a 98% confidence level.
6) \qquad
A) 1.75
B) 2.05
C) 2.33
D) 2.575
7) Find the critical value $z_{\alpha / 2}$ that corresponds to a 91% confidence level.
8) \qquad
A) 1.75
B) 1.70
C) 1.34
D) 1.645
9) Find $z_{\alpha / 2}$ for $\alpha=0.09$.
10)

A) 1.34
B) 1.75
C) 2.61
D) 1.70

Use the confidence level and sample data to find the margin of error E. Round your answer to the same number of decimal places as the sample mean unless otherwise noted.
7) College students' annual earnings: 99% confidence; $n=68, \bar{x}=\$ 3068, \sigma=\$ 818$
7) \qquad
A) $\$ 255$
B) $\$ 194$
C) $\$ 958$
D) $\$ 231$
8) Weights of eggs: 95% confidence; $n=45, \bar{x}=1.50 \mathrm{oz}, \sigma=0.20 \mathrm{oz}$
8) \qquad
A) 0.01 oz
B) 0.44 oz
C) 0.06 oz
D) 0.05 oz

Solve the problem. Round the point estimate to the nearest thousandth.
9) 386 randomly selected light bulbs were tested in a laboratory, 97 lasted more than 500 hours. Find
9) \qquad a point estimate of the proportion of all light bulbs that last more than 500 hours.
A) 0.749
B) 0.251
C) 0.249
D) 0.201
10) Find the point estimate of the proportion of people who wear hearing aids if, in a random sample
10) \qquad of 381 people, 76 people had hearing aids.
A) 0.166
B) 0.199
C) 0.197
D) 0.801

Assume that a sample is used to estimate a population proportion p. Find the margin of error E that corresponds to the given statistics and confidence level. Round the margin of error to four decimal places.
11) 95% confidence; the sample size is 5700 , of which 20% are successes
11) \qquad
A) 0.00780
B) 0.0104
C) 0.0120
D) 0.0137
12) 95% confidence; $n=250, x=130$
12) \qquad
A) 0.0557
B) 0.0743
C) 0.0619
D) 0.0650
13) In a random sample of 158 college students, 104 had part- time jobs. Find the margin of error for
13) \qquad the 95% confidence interval used to estimate the population proportion.
A) 0.0666
B) 0.00279
C) 0.130
D) 0.0740

Use the given data to find the minimum sample size required to estimate the population proportion.
14) Margin of error: 0.027 ; confidence level: $98 \% ; \hat{p}$ and \hat{q} unknown
14) \qquad
A) 1686
B) 1970
C) 863
D) 1862
15) Margin of error: 0.02 ; confidence level: 95%; from a prior study, $\hat{\mathrm{p}}$ is estimated by the decimal
15) \qquad equivalent of 52%.
A) 2398
B) 4994
C) 4139
D) 2158
16) Margin of error: 0.008 ; confidence level: $99 \% ; \hat{p}$ and \hat{q} unknown
16) \qquad
A) 15,900
B) 26,024
C) 25,894
D) 25,901
17) Margin of error: 0.04 ; confidence level: 95%; from a prior study, $\hat{\mathrm{p}}$ is estimated by the decimal
17) equivalent of 89%.
A) 9
B) 209
C) 236
D) 708

Use the given degree of confidence and sample data to construct a confidence interval for the population proportion p.

18) A survey of 865 voters in one state reveals that 408 favor approval of an issue before the
19) \qquad legislature. Construct the 95% confidence interval for the true proportion of all voters in the state who favor approval.
A) $0.438<p<0.505$
B) $0.435<\mathrm{p}<0.508$
C) $0.471<p<0.472$
D) $0.444<p<0.500$

Use the given degree of confidence and sample data to construct a confidence interval for the population mean μ. Assume that the population has a normal distribution.
19) A savings and loan association needs information concerning the checking account balances of its
19) \qquad local customers. A random sample of 14 accounts was checked and yielded a mean balance of $\$ 664.14$ and a standard deviation of $\$ 297.29$. Find a 98% confidence interval for the true mean checking account balance for local customers.
A) $\$ 455.65<\mu<\$ 872.63$
B) $\$ 492.52<\mu<\$ 835.76$
C) $\$ 493.71<\mu<\$ 834.57$
D) $\$ 453.59<\mu<\$ 874.69$

Use the given degree of confidence and sample data to construct a confidence interval for the population proportion p.
20) $\mathrm{n}=117, \mathrm{x}=67 ; 88 \%$ confidence
20) \qquad
A) $0.497<p<0.649$
B) $0.502<\mathrm{p}<0.644$
C) $0.498<p<0.648$
D) $0.501<\mathrm{p}<0.645$
21) Of 286 employees selected randomly from one company, 12.59% of them commute by carpooling.
21) \qquad Construct a 90% confidence interval for the true percentage of all employees of the company who carpool.
A) $9.36 \%<p<15.8 \%$
B) $7.53 \%<p<17.6 \%$
C) $8.02 \%<p<17.2 \%$
D) $8.74 \%<p<16.4 \%$
22) Of 80 adults selected randomly from one town, 64 have health insurance. Find a 90% confidence
22) \qquad interval for the true proportion of all adults in the town who have health insurance.
A) $0.696<p<0.904$
B) $0.712<p<0.888$
C) $0.685<p<0.915$
D) $0.726<\mathrm{p}<0.874$

Use the given degree of confidence and sample data to construct a confidence interval for the population mean μ. Assume that the population has a normal distribution.
23) $\mathrm{n}=10, \overline{\mathrm{x}}=14.4, \mathrm{~s}=4.3,95 \%$ confidence
23)
A) $11.91<\mu<16.89$
B) $11.34<\mu<17.46$
C) $11.32<\mu<17.48$
D) $11.37<\mu<17.43$

Use the given degree of confidence and sample data to construct a confidence interval for the population proportion p.
24) Of 147 randomly selected adults, 32 were found to have high blood pressure. Construct a 95%
24) confidence interval for the true percentage of all adults that have high blood pressure.
A) $16.2 \%<p<27.4 \%$
B) $13.0 \%<\mathrm{p}<30.6 \%$
C) $13.8 \%<p<29.7 \%$
D) $15.1 \%<$ p $<28.4 \%$
25) $n=62, x=19 ; 95 \%$ confidence
25) \qquad
A) $0.210<p<0.402$
B) $0.190<p<0.422$
C) $0.191<\mathrm{p}<0.421$
D) $0.209<p<0.403$

Use the given degree of confidence and sample data to construct a confidence interval for the population mean μ. Assume that the population has a normal distribution.
26) The football coach randomly selected ten players and timed how long each player took to perform
a certain drill. The times (in minutes) were:
$\begin{array}{lllll}7.5 & 10.3 & 9.3 & 8.1 & 11.1\end{array}$
$\begin{array}{llll}7.9 & 6.9 & 11.4 & 10.7 \\ 12.2\end{array}$
Determine a 95% confidence interval for the mean time for all players.
A) $8.28 \mathrm{~min}<\mu<10.80 \mathrm{~min}$
B) $10.90 \mathrm{~min}<\mu<8.18 \mathrm{~min}$
C) $8.18 \mathrm{~min}<\mu<10.90 \mathrm{~min}$
D) $10.80 \mathrm{~min}<\mu<8.28 \mathrm{~min}$

Determine whether the given conditions justify using the margin of error $E=z_{\alpha / 2} \sigma / \sqrt{n}$ when finding a confidence interval estimate of the population mean μ.
27) The sample size is $n=14, \sigma$ is not known, and the original population is normally distributed.
27) \qquad
A) No
B) Yes
28) \qquad
A) Yes
B) No

Use the given information to find the minimum sample size required to estimate an unknown population mean μ.
29) How many weeks of data must be randomly sampled to estimate the mean weekly sales of a new
29) line of athletic footwear? We want 95% confidence that the sample mean is within $\$ 200$ of the population mean, and the population standard deviation is known to be $\$ 1300$.
A) 115
B) 281
C) 163
D) 230
30) How many women must be randomly selected to estimate the mean weight of women in one age \qquad group. We want 90% confidence that the sample mean is within 2.7 lb of the population mean, and the population standard deviation is known to be 22 lb .
A) 181
B) 178
C) 180
D) 256
31) Margin of error: $\$ 140$, confidence level: $95 \%, \sigma=\$ 589$
31) \qquad
A) 60
B) 96
C) 68
D) 48

Assume that a sample is used to estimate a population mean μ. Use the given confidence level and sample data to find the margin of error. Assume that the sample is a simple random sample and the population has a normal distribution. Round your answer to one more decimal place than the sample standard deviation.
32) 95% confidence; $\mathrm{n}=91 ; \overline{\mathrm{x}}=24, \mathrm{~s}=14.7$
32) \qquad
A) 5.26
B) 2.75
C) 3.06
D) 2.62
33) 95% confidence; $n=51 ; \bar{x}=240 ; s=242$
33) \qquad
A) 88.5
B) 143.0
C) 61.3
D) 68.1

Solve the problem.
34) A newspaper article about the results of a poll states: "In theory, the results of such a poll, in 99
34) \qquad cases out of 100 should differ by no more than 2 percentage points in either direction from what would have been obtained by interviewing all voters in the United States." Find the sample size suggested by this statement.
A) 2402
B) 4145
C) 3394
D) 165
35) The following confidence interval is obtained for a population proportion, $\mathrm{p}:(0.862,0.894)$. Use
35) \qquad these confidence interval limits to find the point estimate, \hat{p}.
A) 0.885
B) 0.862
C) 0.894
D) 0.878

Use the confidence level and sample data to find a confidence interval for estimating the population μ. Round your answer to the same number of decimal places as the sample mean.
36) 48 packages are randomly selected from packages received by a parcel service. The sample has a \qquad mean weight of 10.1 pounds and a standard deviation of 2.9 pounds. What is the 95% confidence interval for the true mean weight, μ, of all packages received by the parcel service?
A) $9.0 \mathrm{lb}<\mu<11.2 \mathrm{lb}$
B) $9.3 \mathrm{lb}<\mu<10.9 \mathrm{lb}$
C) $9.1 \mathrm{lb}<\mu<11.1 \mathrm{lb}$
D) $9.4 \mathrm{lb}<\mu<10.8 \mathrm{lb}$
37) A random sample of 112 full- grown lobsters had a mean weight of 22 ounces and a standard
37) \qquad deviation of 3.8 ounces. Construct a 98% confidence interval for the population mean μ.
A) $21 \mathrm{oz}<\mu<23 \mathrm{oz}$
B) $21 \mathrm{oz}<\mu<24 \mathrm{oz}$
C) $20 \mathrm{oz}<\mu<22 \mathrm{oz}$
D) $22 \mathrm{oz}<\mu<24 \mathrm{oz}$
38) Test scores: $n=99, \bar{x}=88.6, \sigma=7.7 ; 99 \%$ confidence
38) \qquad
A) $86.6<\mu<90.6$
B) $87.1<\mu<90.1$
C) $87.3<\mu<89.9$
D) $86.8<\mu<90.4$

Do one of the following, as appropriate: (a) Find the critical value $z_{\alpha / 2}$, (b) find the critical value $t_{\alpha / 2}$, (c) state that neither the normal nor the t distribution applies.
39) $99 \% ; n=17 ; \sigma$ is unknown; population appears to be normally distributed.
39) \qquad
A) $\mathrm{t}_{\alpha / 2}=2.898$
B) $z_{\alpha / 2}=2.583$
C) $t_{\alpha / 2}=2.921$
D) $z_{\alpha / 2}=2.567$
40) $98 \% ; \mathrm{n}=7 ; \sigma=27$; population appears to be normally distributed.
40) \qquad
A) $\mathrm{t}_{\alpha / 2}=1.96$
B) $t_{\alpha / 2}=2.575$
C) $\mathrm{z}_{\alpha / 2}=2.33$
D) $z_{\alpha / 2}=2.05$
41) $90 \% ; \mathrm{n}=9 ; \sigma=4.2$; population appears to be very skewed.
A) $z_{\alpha / 2}=2.365$
B) Neither the normal nor the t distribution applies.
C) $z_{\alpha / 2}=2.306$
D) $z_{\alpha / 2}=2.896$

Testname: PRACTICE QUIZ 3

1) C
2) D
3) C
4) C
5) в
6) D
7) A
8) C
9) B
10) B
11) B
12) C
13) D
14) D
15) A
16) D
17) C
18) A
19) D
20) B
21) A
22) D
23) C
24) D
25) C
26) A
27) A
28) A
29) C
30) C
31) C
32) C
33) D
34) B
35) D
36) B
37) A
38) A
39) C
40) C
41) B
