Kevin Durant is a rising star in the NBA. He plays for the Oklahoma City Thunder. Kevin's 3-point field goal percentage is 42.2\%.

1. Let X denote the number of 3-point field goals that Kevin makes in four attempts. Find the probability that Kevin

$$
P(x=0)=\left.C_{4} \cdot(0.422)^{0} \cdot(0.578)^{4} \approx 0.112\right|^{C_{0}}=\frac{4!}{(4 \cdot 0)!\cdot 1}
$$

2. Represent the probability distribution in the table below. Let X denote the number of 3-point field goals that Kevin makes in four attempts.

$$
\begin{aligned}
& P(x=1)={ }_{4} C_{1}(0.422)^{\prime}(0.578)^{4-1} \approx 0.326 \\
& P(x=2)={ }_{4} C_{2}(0.422)^{2}(0.578)^{4-2} \simeq 0.357 \\
& \begin{array}{l}
P(x=3)={ }_{4} C_{3}(0.422)^{3}(0.578) 4^{4-3} \simeq 0.174 \\
P(x=4)={ }_{4} C_{4}(0.422)^{4}(0.578)^{4-4} \approx 0.017
\end{array}
\end{aligned}
$$

3. Sketch the probability histogram which corresponds to the probability distribution from number 2.

4. What is the mean number of 3 -point field goals that Kevin will make in four attempts?

$$
\mu=\sum x \cdot P(x)
$$

$\mu=0 \cdot 0.112+1 \cdot 0.326+2 \cdot 0.357+3 \cdot 0.174+4 \cdot 0.0317$
$\mu=1.6888 \rightarrow \mu \approx 1.73$-point field goals
5. What is the standard deviation of 3-point field goals that Kevin will make in four attempts?

$$
\begin{aligned}
& \sigma^{2}=\sum x^{2} \cdot P(x)-\mu^{2} \\
& \sigma^{2}=0^{2} \cdot 0.112+1^{2} \cdot 0.326+2^{2} \cdot 0.357+3^{2} \cdot 0.174+4^{2} \cdot 0.0317-1.6888^{2} \\
& \sigma^{2}=0.97515 \rightarrow \sigma \simeq \sqrt{0.97515} \approx 1.0 \text { 3-pt. field goals }
\end{aligned}
$$

6. Multiply the number of trials and Kevin's 3 -point field goal percentage (42.2%). What did you find out? $4(0.422) \approx 1.7$ Cool! The mean of a random variable $\omega /$ a binomial distribution is $\mu=n \cdot p$
7. Now multiply the number of trials, Kevin's 3 -point field goal percentage (42.2%), and the complement of Kevin's 3 -point field goal percentage. Then evaluate the square root of your result. What did you find out?

$$
4(0.422)(0.578)=0.976
$$

$\sqrt{0.976} \approx 1.0 \longrightarrow$ Evenbetfer.. the standard lev. of a randan variable w ha binomial dist is $\sigma=\sqrt{n p q}$
8. Find the range of values for the usual number of 3-point field goals for Kevin when he attempts four 3-point field goals.

$$
\mu-2 \sigma \leq \text { usual \# of 3-pt field goals out of 4 attempt } \leq \mu+2 \sigma
$$

$-0.3 \leq$ usual $\#$ of 3 -pt field goals out of 4 attempts ≤ 3.7
9. Would it be considered unusual for Kevin to make four 3-point field goals out of four attempts? Explain. Yes as 4 lies autside of the coral \# of 3-pt field goals out of 4 attempts.

