GRACEY/STATISTICS CH. 8

CHAPTER PROBLEM

Does the MicroSort method of gender selection increase the likelihood that a baby will be a girl?

Gender-selection methods are somewhat controversial. Some people believe that use of such methods should be prohibited, regardless of the reason. Others believe that limited use should be allowed for medical reasons, such as to prevent gender-specific hereditary disorders. For example, some couples carry X-linked recessive genes, so that a male child has a 50% chance of inheriting aa serious disorder and a female child has no chance of inheriting the disorder. These couples may want to use a genderselection method to increase the likelihood of having a baby girl so that none of their children inherit the disorder.

Methods of gender-selection have been around for many years. In the 1980s, ProCare Industries sold a product called Gender Choice. The product cost only \$49.95, but the FDA told the company to stop distributing Gender Choice because there was no evidence to support the claim that it was 80% reliable. The Genetics and IVF Institute developed a newer gender-selection method called MicroSort. The MicroSort XSORT method is designed to increase the likelihood of a baby girl, and the YSORT method is designed to increase

the likelihood of a boy. Here is a statement from the MicroSort web site: "The Genetics and IVF Institute is offering couples the ability to increase the chance of having a child of the desired gender to reduce the probability of X-linked diseases or for family balancing." Stated simply, for a cost exceeding \$3000, The Genetics and IVF Institute claims that it can increase the probability of having a baby of the gender that a couple prefers. As of this writing, the MicroSort method is undergoing clinical trials, but these results are available: Among 726 couples who used the XSORT method in trying to have a baby girl, 668 couples did have baby girsl, for a success rate of 92.0%. Under normal circumstances with no special treatment, girls occur in 50% of the births. (Actually the current birth rate of girls is 48.79%, but we will use 50% to keep things simple.) These results provide us with an interesting question: Given that 668 out of 726 couples had girls, can we actually support the claim that the XSORT technique is effective in increasing the probability of a girl? Do we now have an effective method of gender selection?

	MATH 103 CHAPTER 8 HOMEWORK
8.2	1-15 odd, 17-24, 27, 29-35 odd, 37, 41, 43, 45
8.3	1-5, 7, 11, 13-16, 19, 24, 25, 26, 29, 32
8.4	1-5, 7, 9, 10, 11, 14, 16, 17, 19
8.5	1-5, 7, 9, 11, 13, 15, 16, 19, 23, 27

8.1 REVIEW AND PREVIEW

In Chapters 2 and 3 we used "	
" when we	
data using tools such as the, and	
Methods of	
statistics use data to make an	
or about a	·
The two main activities of	
are using sample data to (1)	
α	and
(2) or	
about a	In
Chapter 7 we presented methods for	a
	with a

		, and in this
chap	ter we present the method of	
DEFINIT	ION	
In statisti	ics, a <u>hypothesis</u> is a or	
about a	of the	·
A <u>hypothe</u>	esis test (aka test of significance) is a	
for testing	g a about a	
of a	·	
The main o	objective of this chapter is to	the
	to	tests for
claims mad	de about a population	, a population
	, or a population	
	-	
8.2 BAS	ICS OF HYPOTHESIS TESTING Key Concept	
	In this section we present individual	of a
		In Part 1 we
	discuss the basic of _	

test	ing. Because these co	oncepts are used in the follow	ving sections and
chap	ters, we should	and	
		the following:	
π	How to	the	
		and	
		from a given	
	and how to	both in	
	form		
π	How to	the	of the
			, given a
		and	
π	How to	the	
		, given a	
π	How to	the	, given
	α	of the	
π	How to	the	about a

		_ in		_ and
		terms		
In Par	t 2 we discuss the		of a	
PART 1: BASICS (ONCEPTS OF HY	POTHESIS	TESTING	
The methods presen	nted in this chapte	r are based	on the	
for				_·
RARE EVENT RULE	FOR INFERENT	IAL STATI	STICS	
If, under a given as:	sumption, the			of a particular
observed is extrem	ely		, we conclude ·	that the
	is	probably no	ot	·
Following this rule,	Ne	a		_ by
	sample c	data in an at	tempt to	
between results the	ıt can			by
	and results that ar	e		
to	by		We can exp	ain the
occurrence of				_results by
saying that either a			has inde	ed occurred or

that the			is
·			
WORKING WITH THE STATED CLASS	IM: NULL AND	ALTERNATIV	E
The null hypothesis denoted by	is a		_ that the
value of a			is
to some		value. The term	1
is used to		c	or
or			
The <u>alternative hypothesis</u> denoted by	v or _	or	is the
that the		has	a value that
somehow from the	2		······································
For the methods of this chapter, the _		forn	n of the
		must use one of	these
symbols:,,			
NOTE ABOUT FORMING YOUR OWI	N CLAIMS (HYP	OTHESES)	
If you are	a study and v	vant to use a	
	to		your

, the	must be worded so that it
becomes the	You
can	α
that some parameter is	_ to some
value.	
IDENTIFYING AND	
• Identify the specific to be tested	
Express it in form	
• Give the symbolic form that must be is	when the
obtained so far, identify the and the and the is the symbolic expression that contain is the symbolic expression that the is the symbolic expression that the	_
the	value being

Example 1: Examine the given statement, then express the null hypothesis and the alternative hypothesis in symbolic form.

- a. The proportion of people aged 18-25 who currently use illicit drugs is equal to 0.20.
- c. The standard deviation of daily rainfall amounts in San Francisco is 0.66 cm.

- b. The majority of college students have credit cards.
- d. The mean weight of plastic discarded by households in one week is less than 1 kg.

CONVERTING SAMPLE DATA TO A TEST STATISTIC

The	required for a
test typically involve	a
	_ to a
The <u>test statistic</u> is a	used in making a
about the	It is found by converting

the_	(such as		(such as,	,, or	
	_) to a _	, (such as,	, or) with	
the_	J	that the		is	
		In this chapter we use the following		_ statistics:	
	Tes	t statistic for proportion:			

Test statistic for mean:

Test statistic for standard deviation

Example 2: Find the value of the test statistic. The claim is that less than $\frac{1}{2}$ of adults in the United States have carbon monoxide detectors. A KRC Research survey of 1005 adults resulted in 462 who have carbon monoxide detectors.

TOOLS FOR ASSESSING THE TEST STATISTIC: CRITICAL REGION, SIGNIFICANCE LEVEL, CRITICAL VALUE, AND P-VALUE

The		alone usually	
	give u	is enough information to make a decision about the	
being_		The following tools can be used to	
and		the	
	π	The critical region (aka rejection region) is the _	of
		all of the	
		that cause us to the	
	π	The <u>significance level (denoted by)</u> is the	
		that the	will fall in
		the	when the
		is acti	ually

	If the	falls	in the
		, we	
	the	, so	is
	the of	making the	
	of the		
	when it is		
π	A critical value is any value that	ıt 1	he
		fro	m the
	of the		
	that lead	d to	
	of the	The	
		depend on	the
	nature of the		, the
		that appl	ies, and
	the	of	
π	The <u>P-value (aka p-value or p</u>	robability value) is the	
	of get	ting a	of the
		that is	

	as the one			
representing the	, assuming that			
the	is			
P-values can be found	finding the			
the				
The procedure can be summarized as follows:				
Critical region in the left tail:				

Critical region in the right tail:

Critical region in two tails:

to the ...

Confidence intervals: A ______

of a _____ contains

the _____ values of that

_____. If a ______

_____does____

_____ a _____ value of a

_____ that _____.

Example 3: Use the given information to find P-value.

a. The test statistic in a righttailed test is z = 2.50

c. With H_1 : $p \neq \frac{3}{4}$, the test statistic is z = 0.35

- b. The test statistic in a two-tailed test is z = -0.55
- d. With H_1 : p < 0.777, the test statistic is z = -2.95

Example 4: State the final conclusion in simple non-technical terms. Be sure to address the original claim.

- a. Original claim: The percentage of on-time U.S. airline flights is less than 75%. Initial conclusion: Reject the null hypothesis.
- b. Original claim: The percentage of Americans who believe in heaven is equal to 90%. Initial conclusion: Reject the null hypothesis.

ERRORS IN HYPOTHESIS TESTS

When testing a null hypothesis, we arrive at a		
it or	to it.	
Such conclusions are sometimes	and sometimes	
(even if we do	everything).	
π Type I error : The	of	
the	when it is	
actually	The symbol is used to	
represent the	of a	

error.

π	Type II error: The	 	of	to
		_ the		
	when it is actually	The	symbol	is used
	to represent the		of a	
	error.			

NOTATION

α (alpha) =	of a	(the
	of the _	
	when it is)	
β (beta) =	of a	(the
	of to	the
	when it is	_)

CONTROLLING TYPE I AND TYPE II ERRORS

One step in our standard procedure	e for testing	
involves the	of the	level
which is the	of a	error. The values of
,, and the sample size	are all	, so when you

choose or		any	of	them, the		_ is
automatically			One co	ommon pract	tice is to sele	ect the
		level	_, then sele	ect a		size
that is		, so the vo	ulue of	is		·•
Generally, try	to use the			the	at you can to	lerate,
but for	err	ors with m	ore serious	s consequen	ces, select _	
values of	Then choose	a		as	s	_as is
	, t	pased on c	onsideratio	ons of		
and other rele	evant factors. A	Another co	ommon prac	tice is to se	elect ar	nd,
so the require	ed sample size _	is au	tomatically	determined	d.	
			TRUE S	TATE OF N	NATURE	
		THE			THE NULL HYPOTHES IS FALSE	IS
DECISION	We decide to reject H_{0}	TYP ERR			CORRECT DECISION	
	We fail to reject H_0	CORI DECIS	RECT SION		TYPE II ERROR	

Example 5: Identify the type I error and the type II error that correspond to the given hypothesis.

- a. The percentage of Americans who believe that life exists only on earth is equal to 20%.
- b. The percentage of households with at least two cell phones is less than 60%.

COMPREHENSIVE HYPOTHESIS TEST

In this section we	describe the		
used in a	test, but the	following s	sections will
combine those cor	mponents in		·
We can	claims about		by
using the	method, the		method, or we
can use a		·	
CONFIDENCE IN	NTERVAL METHOD		
For	hypothesis tests	a	
interval with a		of	; but
for a	hypothesis test with		

, construct a _		of
·		
A		of a
	contains the	
values of that	parameter. We should therefore	
α	that the population parameter has a	
that is	included in the	
OF A TEST We use to denote the	of to	
a	, so	
$P(\text{type II error}) = \beta$. It follows that	is the	of
α		_, and
statisticians refer to this probability o	as the of a	
, and they often use it to	the	
of a hypothesis test in allowing us to re	ecognize that a	
is		

DEFINITION

32. 2. 12. 23. 1		
The <u>power</u> of a	test is the	e
ofo	ı	hypothesis. The
of the	is	by using a particular
	and a	value of the
	that is an _	to
the value assumed	in the	·
POWER AND THE DESIG	N OF EXPERIMENTS	
Just as is a comm	non choice for a	level, a power of
at least is a con	nmon requirement for	that a
t	est is	. When

an ______ value of

the ______.

_____ can often be used in _____

Example 6: Chantix tablets are used as an aid to help people stop smoking. In a clinical trial, 129 subjects were treated with Chantix twice a day for 12 weeks, and 16 subjects experienced abdominal pain. If someone claims that more than 8% of Chantix users experience abdominal pain, that claim is supported with a hypothesis test conducted with a 0.05 significance level. Using 0.18 as an alternative value of p, the power of the test is 0.96. Interpret this value of the power of the test.

8.3	Key Concept		_
	In section 8.2 we presented the indi	ividual	of
	a	In	this
	section we present		for
	a	(or	
) made about a		
	We illustrate	testing with the	
	method, the	method, and the use of	
			Tn

addition to testing	about population proportions,
we can use the pro	ocedure for testing claims about
or the	
of	
Two common methods for testing a claim	im about a
proportion are (1) to use a	
as an	to the
distribution,	and (2) to use an
method based on	ı the
	- <u></u> •

PART 1: BASIC METHODS OF TESTING CLAIMS ABOUT A POPULATION PROPORTION ρ

REQUIREMENTS OBJECTIVE NOTATION p =

$$\hat{p} = -- q =$$

REQUIRE	MENTS		
1. The	observa	itions are a	
sample.			
2. The	for a	1	are
satisfie			
2 The see	ditiona one		ممهنملانمیا مم
3. The con	aitions and	lare	Satisfied so
the		of	
THE			
proportions	s can be	by a	
p. opo			
with	and	Note that	is the
		used in the	··································
TEST STA	TISTIC FOR TESTING	A CLAIM ABOUT A PRO	PORTION
7 —		<i>P</i> – values:	
ζ, —		I – varues.	
		Critical values:	

FINDING THE NUMBER OF SUCCESSES X

Computer software and	designed for	
tests of	usually require	consisting of
the	and the num	ber of
, but the		is often given
instead of		

Example 1: Identify the indicated values. Use the normal distribution as an approximation to the binomial distribution. In a survey, 1864 out of 2246 randomly selected adults in the United States said that texting while driving should be illegal (based on data from Zogby International). Consider a hypothesis test that uses a 0.05 significance level to test the claim that more than 80% of adults believe that texting while driving should be illegal.

a What is the test statistic?

c What is the P-value?

b. What is the critical value?

d. What is the conclusion?

Example 2: The company Drug Test Success provides a "1-Panel-THC" test for marijuana usage. Among 300 tested subjects, results from 27 subjects were wrong (either a false positive or a false negative). Use a 0.05 significance level to test the claim that less than 10% of the test results are wrong. Does the test appear to be good for most purposes?

a. Identify the null hypothesis

b. Identify the alternative hypothesis

c. Identify the test statistic

d. Identify the *P*-value or critical value(s)

- e. What is your conclusion about the null hypothesis?
- f. What is your final conclusion?

Example 3: In recent years, the town of Newport experienced an arrest rate of 25% for robberies (based on FBI data). The new sheriff compiles records showing that among 30 recent robberies, the arrest rate is 30%, so she claims that her arrest rate is greater than the 25% rate in the past. Is there sufficient evidence to support her claim that the arrest rate is greater than 25%?

a. Identify the null hypothesis

b. Identify the alternative hypothesis

c. Identify the test statistic

d. Identify the P-value or critical value(s)

e. What is your conclusion about the null hypothesis?

f. What is your final conclusion?

PART 2: EXACT METHOD FOR TESTING CLAIMS ABOUT A POPULATION PROPORTION ρ

Instead of using the		distribution as an			
		to the			
we c	an get	results by using the _			
			itself. This exact		
appr	oach	require that	and		
	, so we have a	a method that applies when the r	equirement is not		
satis	sfied.				
		The <i>P-</i> value is the	of getting		
		or	among		
		trials.			
	Right-tailed test:	The <i>P-</i> value is the	of getting		
		or	among		
		trials.			
8.4	Key Concept	ABOUT A MEAN: SIGMA KNO			
	methods for	made about a			
		assuming the			

	is a	value. Here we use the			
		with the			
components of _		that were introduced			
in Section 8.2.					
	BOUT A POPULATIO	N MEAN (WITH σ KNOWN)			
OBJECTIVE					
NOTATION					
n =		$\mu_{\scriptscriptstyle{\overline{\chi}}} =$			
$\overline{x} =$		σ =			
л —					
REQUIREMENTS					
1. The					
().					
2. The	of the				
	is	·			
3. The	is				
and/or					

TEST STATISTIC FOR TESTING KNOWN)	A CLAIM ABOUT A MEAN (WITH σ
z =	P – values:
	Critical values:

Example 1: When a fair die is rolled many times, the outcomes of 1, 2, 3, 4, 5, and 6 are equally likely, so the mean of the outcomes should be 3.5. The author drilled holes into a die and loaded it by inserting lead weights, then rolled it 40 times to obtain a mean of 2.9375. Assume that the standard deviation of the outcomes is 1.7078, which is the standard deviation for a fair die. Use a 0.05 significance level to test the claim that outcomes from the loaded die have a mean different from the value of 3.5 expected with a fair die.

a. Identify the null hypothesis

b. Identify the alternative hypothesis

c. Identify the test statistic

d. Identify the P-value or critical value(s)

e. What is your conclusion about the null hypothesis?

f. What is your final conclusion?

Example 2: Listed below are recorded speeds (in mi/h) of randomly selected cars traveling on a section of Highway 405 in Los Angeles (based on data from Sigalert). That part of the highway has a posted speed limit of 65 mi/h. Assume that the standard deviation of speeds is 5.7 mi/h and use a 0.01 significance level to test the claim that the sample data is from a population with a mean greater than 65 mi/h.

68 68 72 73 65 74 73 72 68 65 65 73 66 71 68 74 66 71 65 73 59 75 70 56 66 75 68 75 62 72 60 73 61 75 58 74 60 73 58 75

a. Identify the null hypothesis

b. Identify the alternative hypothesis

c. Identify the test statistic

d. Identify the P-value or critical value(s)

e. What is your conclusion about the null hypothesis?

f. What is your final conclusion?

8.5 TESTING A CLAIM ABOUT A MEAN: SIGMA NOT KNOWN Key Concept...

In Section 8.4 we discussed methods for testing a _____

about a _____, but that section

is based on the _____ assumption that the value of

	is	In this section, we present methods for testing a
	claim about a	, but we
	require	that is known. The methods of this section
	are referred to as a	because they use the
		that was introduced in
	Section 7.4.	
TES	TING CLAIMS ABOUT A	POPULATION MEAN (WITH σ NOT KNOWN)
OBJ	ECTIVE	
NOT	ATION	
<i>n</i> =		$\mu_{\scriptscriptstyle{\overline{x}}} =$
$\overline{x} =$		s =
REQ	UIREMENTS	
1. TI	ne is	a
().	
2. T	he	of the

		is	· 	
3. T	he	is		
			M ABOUT A MEAN	
TEST KNO	\A/NI\		M ABOUT A MEAN	
<i>t</i> = —		P — va	lues:	
		Critic	al values:	
	The		ENT † DISTRIBUTIO	is
2.	The Student	_ distribution has th	e same general	
	as the			
	distribution; its	S	hape reflects the	
	,	that is expected	d when is used	to estimate
	·			
3.	The			has a mean of
	·			

4. The		of the			
			with		
the		and is	than		
5. As the		gets	,		
the			gets		
to the			·		
CHOOSING THE CORR	ECT METHOD				
When	a	about a			
, first be sur	e that the samp	ole data have been c	ollected with an		
appropriate	r	nethod. If we have	a		
		, a	test of a		
about	might use t	he			
	, the		distribution, or it		
might require		methods or			
resampling techniques.					
To test a	about (a			
use the			when the		
sample is a					

		is		, and
		or	of the	se conditions is
satisfied:				
	The		is	
	distribu	ited or	_	

Example 1: Determine whether the hypothesis test involves a sampling distribution of means that is a normal distribution, Student t distribution, or neither.

a. Claim about FICO credit scores of adults: $\mu=678,\ n=12,\ \overline{x}=719,\ s=92.$ The sample data appear to come from a population with a distribution that is not normal and σ is not known.

b. Claim about daily rainfall amounts in Boston: $\mu < 0.20$ in., n = 52, $\overline{x} = 0.10$ in., s = 0.26 in. The sample data appear to come from a population with a distribution that is very far from normal, and σ is known.

FINDING P-VALUES WITH THE STUDENT + DISTRIBUTION

1. Use software or a _____

2.	If	is no	t available, use	e Table	A-3 to identify	/ a
	of _		_ as follows: U	se the	number of	
	of _		to		the	
	r	ow of Table A-3,	then determin	ne wher	e the	
		lies	to t	he		
	in that	Based on a con	nparison of the	e		
	·	and the			_ in the row of	
	Table A-3,	a		_ of		_ by
	referring to the			giv	en at the	
	of Table A-3.					

Example 2: Either use technology to find the P-value or use Table A-3 to find a range of values for the P-value.

a. Movie Viewer Ratings: Two-tailed test with n = 15, and test statistic t = 1.495.

b. Body Temperatures: Test a claim about the mean body temperature of healthy adults. Left-tailed test with n=11 and test statistic t=-3.518.

Example 3: Assume that a SRS has been selected from a normally distributed population and test the given claim. A SRS of 40 recorded speeds (in mi/h) is observed from cars traveling on a section of Highway 405 in Los Angeles. The sample has a mean of 68.4 mi/h and a standard deviation of 5.7 mi/h (based on data from Sigalert). Use a 0.05 significance level to test the claim that the mean speed of all cars is greater that the posted speed limit of 65 mi/h.

a. Identify the null hypothesis

b. Identify the alternative hypothesis

c. Identify the test statistic

d. Identify the P-value or critical value(s)

e. What is your conclusion about the null hypothesis?

GRACEY/STATISTICS CH. 8

f. What is your final conclusion?

Example 2: Assume that a SRS has been selected from a normally distributed population and test the given claim. The trend of thinner Miss America winners has generated charges that the contest encourages unhealthy diet habits among young women. Listed below are body mass indexes (BMI) of recent Miss America winners. Use a 0.01 significance level to test the claim that recent Miss America winners are from a population with a mean BMI less than 20.16, which was the BMI for winners from the 1920s and 1930s.

19.5 20.3 19.6 20.2 17.8 17.9 19.1 18.8 17.6 16.8

a. Identify the null hypothesis

b. Identify the alternative hypothesis

c. Identify the test statistic

d. Identify the P-value or critical value(s)

e. What is your conclusion about the null hypothesis?

f. What is your final conclusion?

		Total Control	Area in One Tail		(55
- 10	0.005	0.01	0.025	0.05	.0
Degrees of			Area in Two Tails		
Freedom	0.01	0.02	0.05	0.10	0
1	63.657	31.821	12.706	6.314	3.
2	9.925	6.965	4.303	2.920	1.
3	5.841	4.541	3.182	2.353	1.
4	4.604	3.747	2.776	2.132	- 1
5	4.032	3.365	2.571	2.015	
6	3.707	3.143	2.447	1.943	- 11 L
7	3.499	2.998	2.365	1.895	L
8	3.355	2.896	2.306	1.860	1.
9	3.250	2.821	2.262	1.833	1.
10 11	3.169	2.764	2.228	1.812	L
12	3.106	2.718 2.681	2.201 2.179	1.796 1.782	1.
13	3.012	2.650	2.160	1.771	
14	2.977	2.624	2.145	1.761	
15	2.947	2.602	2.131	1.753	1
16	2.921	2.583	2.120	1.746	
17	2.898	2.567	2.110	1.740	Ī
18	2.878	2.552	2.101	1.734	141
19	2.861	2.539	2.093	1.729	1
20	2.845	2.528	2.086	1.725	
21	2.831	2.518	2.080	1.721	
22	2.819	2.508	2.074	1.717	1
23	2.807	2.500	2.069	1.714	1
24	2.797	2,492	2.064	1.711	12
25	2.787	2.485	2.060	1.708	1.3
26	2.779	2.479	2.056	1.706	1.3
27	2.771	2.473	2.052	1.703	1.3
28	2.763	2.467	2.048	1.701	1.3
29	2.756	2,462	2.045	1.699	1.3
30	2.750	2.457	2.042	1.697	1.3
31	2.744	2.453	2.040	1.696	1
32	2.738	2.449	2.037	1.694	L
34	2.728	2.441	2.032	1.691	1
36	2.719	2.434	2.028	1.688	1,1
38	2.712	2.429	2.024	1.686	1.3
40	2.704	2.423	2.021	1.684	- 1
45	2.690	2.412	2.014	1.679	1.
50 55	2.678	2.403	2.009	1.676	1.
60	2.668 2.660	2.396 2.390	2.004 2.000	1.673 1.671	L
65	2.654	2.385	1.997	1.669	- 1
70	2.648	2.381	1.994	1.667	- 1
75	2.643	2.377	1.992	1.665	1.
80	2.639	2.374	1.990	1.664	i
90	2.632	2.368	1.987	1.662	1
100	2.626	2.364	1.984	1.660	i
200	2.601	2.345	1.972	1.653	I.
300	2.592	2.339	1.968	1.650	
400	2.588	2.336	1.966	1.649	- 1
500	2.586	2.334	1.965	1.648	
750	2.582	2.331	1.963	1.647	13
1000	2.581	2.330	1.962	1.646	13
2000	2.578	2.328	961	1.646	13