CHAPTER PROBLEM

How do we interpret a poll about global warming?

Global warming is the increase in the mean temperature of air near the surface of the earth and the increase in mean temperature of the oceans. Scientists generally agree that global warming is caused by increased amounts of carbon dioxide, methane, ozone, and other gases that result from human activity.

Global warming is believed to be responsible for the retreat of glaciers, the reduction in the arctic region, and a rise in sea levels. It is feared that continued global warming will result in even higher sea levels, flodding, draught, and more severe weather.

Because global warming appears to have the potential for causing dramatic changes in our environment, it is critical that we recognize that potential. Just how much do we all recognize global warming? In a Pew Research Center poll, respondents were asked "From what you've read and heard, is there solid evidence that the average temperature on earth has been increasing over the past few decardes, or not?" In response to that question, 70% of 1501 randomly selected adults in the United States answered "yes". Therefore, among those polled, 70% believe in global warming. Although the subject matter of this poll has great significance, we will focus on the interpretation and anlysis of the

results. Some important issues that relate to this poll are as follows:

- How can the poll results be used to estimate the percentage of all adults in the United States who believe that the earth is getting warmer?
- How accurate is the result of 70% likely to be?
- Given that only 1501/225,139,000 or 0.0007% of the adult population in the United States were polled, is the sample size too small to be meaningful?
- Does the method of selecting the people to be polled have much of an effect on the results?

We can answer the last question based on the sound sampling methods discussed in Chapter 1. The method of selecting the people to be polled most definitely has as effect on the results. The results are likely to be poor if a convenience sample or some other nonrandom sampling method is used. If the sample is a simple random sample, the results are likely to be good.

Our ability to understand polls and to interpret the results is crucial for our role as citizens. As we consider the topics of this chapter, we will learn more about polls and surveys and how to correctly interpret and present results.

CH. 7 **GRACEY/STATISTICS** MATH 103 CHAPTER 7 HOMEWORK **7.2** 1-27 odd, 30, 33, 36, 37, 41, 45 **7.3** 1-7, 10, 11, 12, 13, 16, 17-20, 21, 25, 26, 31, 33 **7.4** 1-13, 16, 17, 20, 23, 25, 27, 29, 30 7.1 REVIEW AND PREVIEW In Chapters 2 and 3 we used "_____ _____" when we _____ data using tools such as _____, and statistics such as the _____ and _____ We use "______ " when we use _____ data to make inferences about _____. Two major activities of statistics are (1) to use data to ______ values of _____ _____, and (2) to test ______ or _____ made about _____ parameters.

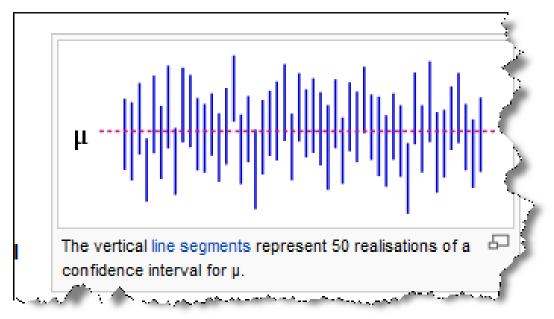
In this chapter we begin working with the true core of _____

statistics as we use sample data to ______ values of

population	
------------	--

GRACEY/STA ⁻	TISTICS		CH. 7
7.2 ESTIMATING A POPULATION PROPORTION Key Concept In this section we present methods for using a			
		to estimate a	
		There are three main ideas	:
	1. The	is the	e best
		of th	e
			to
	construct a		to
	estimate the		_of a
	population	, and we should kno	w how to
		_such confidence intervals.	
	3. We should know how to f	ind the	
	necessary to	a population	
DEFINIT	ION		
A <u>point</u> es	stimate is a	value (or)
used to	(1	parameter.

	CH. 7
	is the best
of the	
	of the


DEFINITION

A <u>confidence interval (aka</u>) is
a (or an		<u>)</u> of
used to	the	value of
a	A	
	is often abbre	eviated as CI.
A confidence interval is associated with a		level, such
as 0.95 (or 95%). The confidence level gives us th	e	

of the	used to	the
		The
	level is often expressed as th	e
or	, where	is the
	of the	level.

DEFINITION

The <u>confidence level</u> is the				
(often expressed as the eq	uivalent percentage	e value) that the		
	actually does	the		
		, assuming that the		
	process is	a		
number of times. (The			_ is also	
called the	of	, or the		
).			

CH. 7

GRACEY/STATISTICS			CH. 7
CRITICAL VALUES The methods of thi	5 is section (and many others) includ	le a reference to	Da
	that can	be used to	
between		that are	
to	and those that are	to	
Such a	is called a		
Critical values are b	based on the following observation	15:	
1. Under certain	conditions, the	distribu	ition of
sample	can be		by a
	distribution.		

2. A	associated with a	
------	-------------------	--

	has a probability of	of falling in
the		

3	The	separatin	g the	
---	-----	-----------	-------	--

region is commonly denoted by _____ and is referred to as a

_____ value because it is on the _____

separating _____ from _____

that	are	to occur from	those that

are unlikely to occur.

CH. 7

DEFINITION

A <u>critical value</u> is the	on the		
separating		_ that are likely	to occur
from those that are	to occur. The	e number	_ is a
	that is a		_ with the
property that it	an	of	in
the to	ail of the		
distribution.			

Example 1: An interesting and popular hypothesis is that individuals can temporarily postpone their death to survive a major holiday or important event such as a birthday. In a study of this phenomenon, it was found that in the week before and the week after Thanksgiving, there were 12,000 total deaths, and 6062 of them occurred in the week before Thanksgiving.

a. What is the best point estimate of the proportion of deaths in the week before Thanksgiving to the total deaths in the week before and the week after Thanksgiving?

b. Construct a 95% confidence interval estimate of the proportion of deaths in the week before Thanksgiving to the total deaths in the week before and the week after Thanksgiving.

c. Based on the result, does there appear to be any indication that people can temporarily postpone their death to survive the Thanksgiving holiday? Why or why not?

Example 2: In a study of 420,095 cell phone users in Denmark, it was found that 135 developed cancer of the brain or nervous system. Prior to this study of cell phone use, the rate of such cancer was found to be 0.0340% for those not using cell phones.

a. Use the sample data to construct a 95% confidence interval estimate of the percentage of cell phone users who develop cancer of the brain or nervous system.

b. Do cell phone users appear to have a rate of cancer of the brain or nervous system that is different from the rate of such cancer among those using cell phones? Why or why not?

DEFINITION

When the data from a	sample are
used to a	,
the margin of error , denoted by, is the	likely
) between the	

CH. 7

and the	_ of the	
The	of	
is also called the	of t	he
and can be found	by	the
value and the		
of		as
shown in the formula below:		

ROUND-OFF RULE FOR CONFIDENCE INTERVAL ESTIMATES OF p

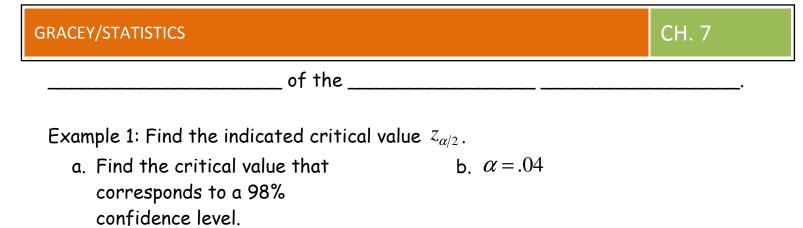
Round the confidence interval	for to
	<u> </u>
DETERMINING SAMPLE SIZE	
Suppose we want to	_ data in order to
some	How do we know how
many sample items must be obtained? If	we solve the for
of	for, we get the first
formula below. Note that this formula re	equires If no such estimate is

GRACEY/STATISTICS	СН. 7
known, we replace by and r	eplace by,
which is shown in the second formula.	
When an estimate is known:	
When no estimate is known:	

ROUND-OFF RULE FOR DETERMINING SAMPLE SIZE

If the computed sample size	is not a,
round the value of	to the next
number.	

Example 3: As your text was being written, former NYC mayor Rudolph Giuliani announced that he was a candidate for the presidency of the United States. If you were a campaign worker and needed to determine the percentage of people that recognized his name, how many people should you have surveyed to estimate that percentage? Assume that you wanted to be 95% confident that the sample percentage was in error by no more than 2 percentage points, and also assume that a recent survey indicated that Giuliani's name is recognized by 10% of all adults (based on data from a Gallup poll).


~ ~ ~	OFV	10-	T A 7		
GKA	CEY	15	IAI	IIS.	ILS
<u> </u>					

//STATISTICS	CH. 7
7.3 ESTIMATING A POPULATION MEAN: SIGMA Key Concept	
In this section we present methods for	a
In add	ition to knowing the
values of the data or	, we
must also know the value of the	
, Here are three a	concepts that should be
learned in this section.	
1. We should know that the	
is the best	of the
2. We should learn how to use	
construct a	for
the value of a	
, and we should know how to	
such	
3. We should develop the ability to	the
necessary to	a

POINT ESTIMATE

The		is an
estimator of the		, and for
many populations,		tend to
less than other measures of		, so the
	, is usually the bes	3†
of the		
KNOWLEDGE OF SIGMA		
The methods of this section	require that we kno	w, but in 7.4 we will learn
methods to	a	
without knowledge of the val	ue of	
NORMALITY REQUIREMEN The population must either b		
or If	, the pop	ulation does not need to have a
th	at is	as
long as it is		As long as there
are no	and if a	of the

GRACEY/STATISTICS		CH. 7
	is not	
different from being	, the	
requirement is satisfied.		
SAMPLE SIZE REQUIREM	ENT	
The	sample size actually depends on	how much the
	departs fr	om a
	Sample sizes of	f to
are sufficient i	f the population has a	
that is not far from	, but some other pop	ulations have
	_ that are extremely far from	anc
	greater than	might be
necessary.		
CONFIDENCE LEVEL		
The	is as	sociated with a
	, such as	or
The		gives us the

PROCEDURE FOR CONSTRUCTING A CONFIDENCE INTERVAL FOR μ with known $\sigma.$

1.	Verify that the	are	·
2.	Refer to table	or use	to find the
			that corresponds
	to the desired		
3.	Evaluate the	of	
4.	Using the value of the	 	of
		and the value of the	
		, find the values of the _	

GRACEY/S	STATISTICS	CH. 7
ar	nd Substitute those values in the _	
_	for the	:
_	or	or
_	·	
5. Ro	ound the resulting values by using the following round-off	rule.
ROUND	D-OFF RULE FOR CONFIDENCE INTERVALS USED TO	DESTIMATE μ
1. W	Vhen using theset of	to
_	a confidence	_, round the
		to
_	place t	han is used for
tł	he set of data.	
2. W	Vhen the set of data is	
ar	nd only the	()
ar	re used, round the	
lir	mits to the same number of digits as the	mean.

Example 2: A simple random sample of 40 salaries of NCAA football coaches has a mean of \$415,953. Assume that $\sigma = $463,364$.

a. Find the best point estimate of the mean salary of all NCAA football coaches.

b. Construct a 95% confidence interval estimate of the mean salary of an NCAA football coach.

c. Does the confidence interval contain the actual population mean of \$474,477?

Example 3: Polling organizations typically generate the last digits of telephone numbers so that people with unlisted numbers are included. Listed below are digits randomly generated by STATDISK. Such generated digits are from a population with a standard deviation of 2.87.

- 1 1 7 0 7 4 5 1 7 6
- a. Use the methods of this section to construct a 95% confidence interval estimate of the mean of all such generated digits.

b. Are the requirements for the methods of this section all satisfied? Does the confidence interval from part (a) serve as a good estimate for the population mean? Explain.

FINDING THE SAMPLE SIZE REQUIRED TO ESTIMATE A POPULATION MEAN

Objective:

Notation:

Requirements:

ROUND-OFF RULE FOR SAMPLE SIZE n

If the	sample size is a
	, round the value of to the next

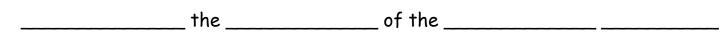
Example 4: A researcher wants to estimate the mean grade point average of all current college students in the United States. She has developed a procedure to standardize scores from colleges using something other than a scale from 0 and 4. How many grade point averages must be obtained so that the sample mean is within 0.1 of the population mean. Assume that a 90% confidence level is desired. Also assume that a pilot study showed that the population standard deviation is estimated to be 0.88.

7.4 ESTIMATING A POPULATION MEAN: SIGMA NOT KNOWN Key Concept...

In this section, we present methods for _____

population	is
not known. With	unknown, we use the
	instead of a
	, assuming the relevant
	are satisfied. The
	was developed by William Gosset
(1876-1937). William Gosse	t was a Guinness Brewery employee. He needed a
distribution that could be u	sed with small samples. The brewery where he
worked did not the publicat	ion of research results so he published under the
pseudonym "	". In real circumstances,
is typically	, which makes the methods of this
section	and
POINT ESTIMATE	
The	is an
estimator of the	·
STUDENT + DISTRIBUTION	
If a population has a	distribution, then the
distribution of	

GRACEY/STATISTICS	СН. 7
is a	
all samples of size A	
is referred to as a	Because we
know the value of the	
, we	e
it with the value of the	
, but this introduces a	nother source of
, especially with	·
In order to maintain a desired	,
we compensate for this additional unreliability by making the _	
: we use _	
that are	than the
of	from the
A	
of can be found using	or
·	


CH. 7

DEFINITION

The number of <u>degrees of freedom</u> for a collection of				
	_ is the	of		
	_ that can	after c	ertain restrictions	
have been		_ on all data values. Th	e number of	
	of	is o [.]	ften abbreviated as	
·				
For example: If 10 stu	idents have quiz s	scores with a mean of 8	30, we can freely	
assign values to the fi	rst	_scores, but the	score is	
than		The	of the 10 seenes	

then ______ of the 10 scores

must be ______so the ______score must be _____

to any values, we say there are ______ of

_____. For the

applications of this section, the number of degrees of freedom is simply the

Example 1: A sample size of 21 is a simple random sample selected from a normally distributed population. Find the critical value $t_{\alpha/2}$ corresponding to a 95% confidence level.

PROCEDURE FOR CONSTRUCTING A CONFIDENCE INTERVAL FOR μ with unknown σ .

1.	Verify that the			_are		<u> </u>
2.	Using		0	f		_, refer
	to table	or use			_ to find the	
					that corr	responds
	to the desired				·	For the
					, refer to	o the
	"	_ in			″.	
3.	Evaluate the		of			
4.	Using the value of th	e				of

GRACEY/STATISTICS	CH. 7
and the value of the	
, find the values of the	
and Substitute those values in the	
for the	
5. Round the resulting values by using the following round-off rule	
ROUND-OFF RULE FOR CONFIDENCE INTERVALS USED TO ES	TIMATE μ
1. When using the set of	to
a confidence, ro	ound the
	to
place than	
place than	is used for
place than theset of data.	is used for
place than theset of data. 2. When theset of data is	is used for ()

CH. 7

TABLE A-3					
	0.005	0.01	Area in One Tail 0.025	0.05	0.10
Degrees of Freedom	0.01	0.02	Area in Two Tails 0.05	0.10	0.20
1	63.657	31.821	12.706	6.314	3.078
2	9.925	6.965	4.305	2.920	1.886
3	5.841	4.541	3.182	2.353	1.638
4	4.604	3.747	2.776	2.132	1.533
5	4.032	3.365	2.571	2.015	1.476
6	3.707	3.143	2,447	1.943	1.440
7	3.499	2,998	2.365	1.895	1.415
8	3.355	2.896	2.306	1.860	1.397 •
9	3.250	2.821	2.262	1.833	1.383
10	3.169	2.764	2.228	1.812	1.372
11 12	3.106	2.718	2.201	1.796	1.363 -
12	3.055	2.681 2.650	2.179 2.160	1.782	1.356
14	2.977	2.630	2.145	1.771	1345
15	2.947	2.602	2.131	1.753	1.341
16	2.921	2.583	2.120	1.746	1.337
17	2,858	2.567	2.110	1,740	1.333
18	2,578	2.552	2.101	1.734	1.330
19	2,861	2.539	2.093	1.729	1.328
20	2.845	2.528	2.086	1.725	1.325
21	2.831	2.518	2.080	1.721	1.323
22	2.819	2.508	2.074	1.717	1.321
23	2.807	2.500	2.069	1.714	1.319
24	2,797	2,492	2.064	1.711	1.318
25	2.787	2.485	2.060	1.708	1.316
26	2,779	2,479	2.056	1.706	1.315
27	2.771	2,473	2.052	1.703	1.314
28	2.763	2,467	2.048	1.701	1.313
29	2.756	2.462	2.045	1.699	1.311
30	2.750	2.457	2.042	1.677	1.310
31	2.744	2.453	2.040	1.696	1.309
32	2.738	2,449	2.037	1.694	1.309
34	2.728	2.441	2.032	1.691	1.307
36	2,719	2,434 2,429	2.028	1.688	1.306
40	2,704	2.423	2.021	1.684	1.305
45	2.690	2.412	2.014	1.679	1.301
50	2,678	2,403	2.009	1.676	1.299
55	2.668	2,396	2.004	1.673	1.297
60	2.660	2,390	2.000	1.671	1.296
65	2.654	2.385	1.977	1.669	1.255
70	2.648	2.381	1.994	1.667	1.294
75	2.643	2.377	1.992	1.665	1.295
80	2.639	2.374	1.990	1.664	1.292
90	2,632	2.368	1.987	1.662	1.291
100	2.626	2.364	1.984	1.660	1.290
200	2.601	2.345	1.972	1.653	1.286
300	2.592	2.339	1.968	1.650	1.284
400	2.588	2.336	1.966	1.649	1.284
500	2.586	2.334	1.965	1.648	1.283
750	2.582	2.331	1.963	1.647	1.283
1000	2.581	2.330	1.962	1.646	1.282
2000	A-578	2.328		1.646	1.280

Example 2: In a study designed to test the effectiveness of acupuncture for treating migraine, 142 subjects were treated with acupuncture and 80 subjects were given a sham treatment. The numbers of migraine attacks for the acupuncture treatment group had a mean of 1.8 and a standard deviation of 1.4. The numbers of migraine attacks for the sham treatment group had a mean of 1.6 and a standard deviation of 1.2.

a. Construct a 95% confidence interval estimate of the mean number of migraine attacks for those treated with acupuncture.

b. Construct a 95% confidence interval estimate of the mean number of migraine attacks for those given a sham treatment.

c. Compare the two confidence intervals. What do the results suggest about the effectiveness of acupuncture?

GRACE	Y/STATISTICS	CH. 7
IMPO	ORTANT PROPERTIES OF THE STUDENT + DISTRIBUTION	
1.	The Student <i>t</i> distribution is for diff	erent
2.	The Student <i>t</i> distribution has the general	
	as the	
	distribution, but it reflects the greater	(with
	distributions) that is expected of	
	·	
3.	The Student <i>t</i> distribution has a mean of (just as th	e
	distribution has a m	nean of
).	
4.	The standard of the Student <i>t</i> distrib	oution
	with the size, but is	
	than (unlike the	
	distribution, which has).	
5.	As the	, the
	Student <i>t</i> distribution gets to the	

GRACEY/STATISTICS	CH. 7
CHOOSING THE APPROPRIATE DIS	STRIBUTION
It is sometimes difficult to decide wh	ether to use the
	or the
METHOD	CONDITIONS
Use normal (z) distribution	σ and distributed population or σ known and
Use <i>t</i> distribution	σand distributed population or σ and
Use a nonparametric method or bootstrapping	Population is distributed and

Example 3: Choosing distributions. You plan to construct a confidence interval for the population mean μ . Use the given data to determine whether the margin of error *E* should be calculated using a critical value of $z_{\sigma/2}$ from the normal distribution, $t_{\sigma/2}$ from a *t* distribution, or neither (methods of this chapter cannot be used).

- a. n = 7, $\overline{x} = 80$, s = 8, and the population has a very skewed distribution
- b. n = 150, $\overline{x} = 23.5$, $\sigma = 0.2$, and the population has a skewed distribution

distribution

c. n = 10, $\overline{x} = 65$, s = 12, and the population has a normal

d. n=13, $\overline{x}=5$, $\sigma=3$, and the population has a normal distribution

e. n = 92, $\overline{x} = 20.7$, s = 2.5, and the population has a skewed distribution

FINDING A POINT ESTIMATE AND E FROM A CONFIDENCE INTERVAL

The		is the value
	between the	
		The
of	is	the
	between those	
Point estimate of μ :	Margin	of error:

GRACEY/STATISTICS			
	CDA	$(\nabla T \wedge T)$	ICTICS
	UNA	JIAI	

CH. 7

USING	CONFIDENCE	INTERVALS	TO	DESCRIBE,	EXPLORE,	OR	COMPARE
DATA							

In some cases, we might use a	
to achieve an ultimate goal of	the
of a	In other
cases,	might be
among the different	used to,
, or	data sets. When two or
more data sets have	confidence intervals,
one could	conclude that there does not appear
to be a significant difference between	n the estimated

TI-83/84 PLUS

 Assuming that this sample is representative of the cars in use, construct a 98% confidence interval estimate of the mean amount of nitrogen-oxide emissions for all cars.

b. If the EPA requires that nitrogen-oxide emissions be less than 0.165 g/mi, can we safely conclude that this requirement is being met?

Example 5: Listed below are 12 lengths (in minutes) of randomly selected movies from Data Set 9 in Appendix B.

110 96 125 94 132 120 136 154 149 94 119 132

a. Construct a 99% confidence interval estimate of the mean length of all movies.

b. Assuming that it takes 30 minutes to empty a theater after a movie, clean it, allow time for the next audience to enter, and show previews, what is the minimum time that a theater manager should plan between start times of movies, assuming that this time will be sufficient for typical movies?