CHAPTER PROBLEM

Did Mendel's results from plant hybridization experiments contradict his theory?

Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote "Experiments in Plant Hybridization," which was published in *Proceedings of* the Natural History Society. Mendel presented a theory that when there are two inheritable traits, one of them will be dominant and the other will be recessive. Each parent contributes one gene to an offspring and, depending on the combination of genes, that offspring could inherit the dominant trait of the recessive trait. Mendel conducted an experiment using pea plants. The pods of pea plants can be green or yellow. When one pea carrying a dominant green gene and a recessive yellow gene is crossed with another pea carrying the same green/yellow genes, the offspring can inherit any one of four combinations of genes, as shown in the table below. Because green is dominant and yellow is recessive, the offspring pod will be green if either of the two inherited genes is green. The offspring can have a yellow

pod only if it inherits the yellow gene from each of the two parents. We can see from the table that when crossing two parents with the green/yellow pair of genes, we expect that $\frac{3}{4}$ of the offspring peas should have green pods. That is, P(green pod) = $\frac{3}{4}$. When Mendel conducted his famous hybridization experiments using parent pea plants with the green/yellow combination of genes, he obtained 580 offspring. According to Mendel's theory, $\frac{3}{4}$ of the offspring should have green pods, but the actual number of plants with green pods was 428. So the proportion of offspring with green pods to the total number of offspring is 428/580 = 0.738. Mendel expected a proportion of $\frac{3}{4}$ =0.75, but his actual result is a proportion of 0.738. In this chapter we will consider the issue of whether the experimental results contradict the theoretical results, and, in so doing, we will lay a foundation for hypothesis testing, which is introduced in Chapter 8.

Gene from Parent 1	Gene from Parent 2	Offspring Genes	Color of Offspring Pod
green	green	green/green	green
green	yellow	green/yellow	green
yellow	green	yellow/green	green
yellow	yellow	yellow/yellow	yellow

MATH	103 CI	HAPTER	1 HOME	WORK
	T 00 CI		T 110111	

- **5.2** 1, 3, 4, 5-16, 19, 20, 21, 23, 26, 27, 30
- **5.3** 1, 2, 4, 5-12, 14, 15-20, 21, 24 25-28, 30, 31, 36, 39, 42
- **5.4** 1, 2, 5-8, 10, 11, 14, 15, 16, 19

5.1 REVIEW AND PREVIEW

In this chapter we combine the methods of _____

	_ described in Chapters 2 and 3 and those
of	described in Chapter 4 to describe
and analyze	distributions. Probability
distributions describe what will _	happen
instead of what	did happen, and they are
often given in the form of a	
	_, or
Recall that in Chapter 2 we used _	sample
to cons	truct
distributions. In this chapter we	use the possible
of a	_(determined using methods from Chapter
4) along with the	relative frequencies to

$(\neg RA(FY))$	

construct		
which serve as models of	perfect	
frequency distributions. With this knowledge of population outcomes, we are		
able to find important characteristics, such as the		
and	, and	
to compare	probabilities to	
results in order to determine whether outcomes are		
In order to fully understand probability distributions, we must first		
understand the concept of a	variable, and	
be able to distinguish between	and	
random	variables. In this chapter we focus	
on pro	bability distributions. In	
particular, we discuss	and	
prob	ability distributions.	

GRACE	Y/STATISTICS	CH. 5
5.2	RANDOM VARIABLES Key Concept In this section, we consider the concept of	
	and how they relate to	
	We also discuss how to betw	veen
	random variables and	
	random variables. In addition, we	develop
	formulas for finding the,,,	
	for a Most importantly, we focus on determining whether the outcom	es are likely
	to occur by or they are (in the sense that they are not likely to occur by chance).	
DEF	INITION	
A <u>ra</u> by_	undom variable is a (typically ro	epresented
value	e, determined by, for each	

DEFINITION

A probability distribution is a	that gives the
	for each value of the
	It is often expressed in the format of a
	, or

NOTE

If a probability value is very small, such as 0.000000123, we can represent it as 0+ in a table, where 0+ indicates that the probability value is a very small positive number. Why not represent this as 0?

Recall the tree diagram we made for a couple having 3 children:

CH. 5

DEFINITION

A <u>discrete random variable</u> has either a			
number of or a			
number of values, where	refers to the fact that		
there might be	many values, but they can be		
with a process, so that the number of values is 0 or 1 or	2 or 3, etc.		
A <u>continuous random variable</u> has	many values, and		
those values can be associated with	on a		
scale without _	or		
·			

Example 1: Give two examples of a. Discrete random variables

b. Continuous random variables

GRACEY/STATISTICS	CH. 5
GRAPHS There are various ways to graph a dis	tribution, but
we will consider only the	
A probability histogram is similar	r to a relative
frequency histogram, but the vertical scale shows	
instead of frequencies based on actua events.	al sample
REQUIREMENTS FOR A PROBABILITY DISTRIBUTION	
1. $\Sigma P(x) = 1$ where x assumes all possible values. The sum of all p	probabilities
must be, but values such as 0.999 or 1.001 are acce	eptable
because they result from errors.	
2. $0 \le P(x) \le 1$ for every individual value of x.	

MEAN, VARIANCE, AND STANDARD DEVIATION

1.
$$\mu = \Sigma [x \cdot P(x)]$$

2.
$$\sigma^2 = \Sigma [(x - \mu)^2 \cdot P(x)]$$

3.
$$\sigma^2 = \Sigma [x^2 \cdot P(x)] - \mu^2$$

4.
$$\sigma = \sqrt{\Sigma [x^2 \cdot P(x)] - \mu^2}$$

GRACEY/STATISTICS	СН. 5
ROUND-OFF RULE FOR μ , σ , and σ^2	
Round results by carrying one more	place than the
number of decimal places used for the	variable
If the values of are one decimal place.	, round to
IDENTIFYING UNUSUAL RESULTS WITH THE RAN	IGE RULE OF THUMB
The range rule of thumb may be helpful in	the
value of a	
According to the	of
, most values should lie within	standard
deviations of the; it is;	for
a value to differ from the mean by the deviations.	an standard
Maximum usual value = +	_
Minimum usual value =	_
IDENTIFYING UNUSUAL RESULTS WITH PROBABI <i>x</i> successes among <i>n</i> trials is an unusually high number or	LITIES f successes if the
of or more	is
unlikely with a probability of or	·

GRACEY/STATISTICS		
	JNACET	/ STATISTICS

CH. 5

x successes among *n* trials is an unusually low number of successes if the

of or fewe	r is
unlikely with a probability of or _	
RARE EVENT RULE FOR INFERENTIAL STAT	ISTICS
If, under a given	, the probability of a particular
event is extremely	y small, we conclude that the
is probably not	

Example 2: Based on information from MRINetwork, some job applicants are required to have several interviews before a decision is made. The number of required interviews and the corresponding probabilities are: 1 (0.09); 2 (0.31); 3 (0.37); 4 (0.12); 5 (0.05); 6 (0.05).

- a. Does the given information describe a probability distribution?
- b. Assuming that a probability distribution is described, find its mean and standard deviation.

c. Use the range rule of thumb to identify the range of values for usual numbers of interviews.

d. Is it unusual to have a decision after just one interview. Explain.

EXPECTED VALUE

The	of a	
		is the
theoretical mean outcome	e for	many trials. We
can think of that mean as	the	
in the sense that it is the	:	
that we would expect to g	get if the trials could co	ntinue
DEFINITION		
The <u>expected value</u> of a		random variable is denoted
by, and it repre	esents the	
of the	It is obtained by $E = \sum \left[x \cdot P(x) \right]$	finding the value of $\Sigma[x \cdot P(x)]$.

Example 3: There is a 0.9968 probability that a randomly selected 50-year old female lives through the year (based on data from the U.S. Department of Health and Human Services). A Fidelity life insurance company charges \$226 for insuring that the female will live through the year. If she does not survive the year, the policy pays out \$50,000 as a death benefit.

a. From the perspective of the 50-year-old female, what are the values corresponding to the two events of surviving the year and not surviving?

b. If a 50-year-old female purchases the policy, what is her expected value?

c. Can the insurance company expect to make a profit from many such policies? Why?

3	BINOMIAL PROBABILITY DISTRIBUTIONS Key Concept									
	In this section we focus on one particular category of									
		:								
	probability distributions	. Because binomial								
	probability distributions involve	used with								
	methods of									

GRACEY/STATISTICS	CH. 5
properties of this partic	cular class of
probability distributions. We will present a basic definition of a	I
probability distribution along with	
, and methods for finding	
values probability distributions a	llow us to
deal with circumstances in which the	belong
to relevant	, such as
acceptable/defective or survived/	
DEFINITION	
A binomial probability distribution results from a procedure that me	eets all of the
1. The procedure has a o	of trials.
2. The trials must be	
3. Each trial must have all classified into	o
(commonly referred to as	
and).	
 The probability of a remains the in all trials. 	

NOTATION FOR BINOMIAL PROBABILITY DISTRIBUTIONS

S and *F* (success and failure) denote the two possible categories of outcomes

P(S) = pP(F) = 1 - p = qnx

р

q

P(x)

Example 1: A psychology test consists of multiple-choice questions, each having four possible answers (a, b, c, and d), one of which is correct. Assume that you guess the answers to six questions.

a. Use the multiplication rule to find the probability that the first two guesses are wrong and the last four guesses are correct.

CH. 5

c. Based on the preceding results, what is the probability of getting exactly 4 correct answers when 6 guesses are made?

BINOMIAL PROBABILITY FORMULA

$$P(x) = \frac{n!}{(n-x)!x!} \cdot p^{x} \cdot q^{n-x} \quad \text{for } x = 0, 1, 2, \dots, n$$

where

n

х

р

q

GRACEY/STATISTICS	CH. 5
The factorial symbol, denotes the	of
decreasing	

Example 2: Assuming the probability of a pea having a green pod is 0.75, use the binomial probability formula to find the probability of getting exactly 4 peas with green pods when 5 offspring peas are generated.

TAB	BLE A-1	Bin	omial	Prob	abiliti	es			100		0000	5 180		100	
								p							
n	×	.01	.05	.10	.20	.30	.40	.50	.60	.70	.80	.90	.95	.99	x
2	0	.980	.902	.810	.640	.490	.360	.250	.160	.090	.040	.010	.002	0+	0
	1	.020	.095	.180	.320	.420	.480	.500	.480	.420	.320	.180	.095	.020	1
	2	0+	.002	.010	.040	.090	.160	.250	.360	.490	,640	.810	.902	.980	2
3	0	.970	.857	.729	.512	.343	.216	.125	.064	.027	.008	.001	0+	0+	0
	1	.029	.135	.243	.384	.441	.432	.375	.288	.189	.096	.027	.007	0+	1
	2	0+	.007	.027	.096	.189	.288	.375	.432	.441	.384	.243	.135	.029	2
	3	0+	0+	.001	.008	.027	.064	.125	.216	.343	.512	.729	.857	.970	3
4	0	.961	.815	.656	.410	.240	.130	.062	.026	.008	.002	0+	0+	0+	0
	1	.039	.171	.292	.410	.412	.346	.250	.154	.076	.026	.004	0+	0+	1
	2	.001	.014	.049	.154	.265	.346	.375	.346	.265	.154	.049	.014	.001	2
	3	0+	0+	.004	.026	.076	.154	.250	.346	.412	.410	.292	.171	.039	3
	4	0+	0+	0+	.002	.008	.026	.062	.130	.240	.410	.656	.815	.961	4
5	0	.951	.774	.590	.328	,168	.078	.031	.010	.002	0+	0+	0+	0+	0
	1	.048	.204	.328	.410	.360	.259	.156	.077	.028	.006	0+ '	0+	0+	1
	2	.001	.021	.073	.205	.309	.346	.312	.230	.132	.051	.008	.001	0+	2
	3	0+	,001	.008	.051	.132	.230	.312	.346	.309	.205	.073	.021	.001	3
	4	0+	0+	0+	.006	.028	.077	.156	.259	.360	.410	.328	.204	.048	4
	5	0+	0+	0+	0+	.002	.010	.031	.078	.168	.328	.590	.774	.951	5
6	0	.941	.735	.531	.262	.118	.047	.016	.004	.001	0+	0+	0+	0+	0
	1	.057	.232	.354	.393	.303	.187	.094	.037	.010	.002	0+	0+	0+	1
	2	.001	.031	.098	.246	.324	.311	.234	.138	.060	.015	.001	0+	0+	2
	3	0+	.002	.015	.082	.185	.276	.312	.276	.185	.082	.015	.002	0+	3
	4	0+	0+	.001	.015	.060	.138	.234	.311	.324	.246	.098	.031	.001	4
	5	0+	0+	O+	.002	.010	.037	.094	.187	303	797	354	232	057	5
	6	0+	0+	0+	0+	.001	.004	.016	.047	.118	.262	.531	.735	.941	6
7	0	.932	.698	.478	.210	.082	.028	.008	.002	0+	0+	01	0+	0+	0
	1	.066	.257	.372	.367	.247	.131	.055	.017	.004	0+	0+	0+	04	1
	2	.002	.041	.124	,275	.318	.261	.164	.077	025	004	0+	0+	0+	2
	3	0+	.004	.023	.115	.227	.290	.273	.194	.097	.029	003	0+	0+	3
	4	0+	0+	.003	.029	.097	.194	.273	.290	.227	.115	.023	.004	0+	4
	5	0+	0+	0+	.004	.025	.077	.164	.261	.318	275	124	.0.41	002	5
	6	0+	0+	0+	0+	.004	.017	.055	.131	247	367	372	257	055	6
	7	0+	0+	0+	0+	0+	.002	.008	.028	.082	.210	.478	.698	.932	7
8	0	.923	.663	.430	.168	.058	.017	.004	.001	0+	0+	0+	0+	0+	0
	1	.075	.279	.383	.336	.198	.090	.031	.008	.001	0+	0+	0+	0+	1
	2	.003	.051	.149	.294	.296	.209	.109	.041	.010	.001	0+	0+	0+	2
	3	0+	.005	.033	.147	.254	.279	.219	.124	.047	.009	0+	0+	0+	3
	4	0+	0+	.005	.046	.136	.232	.273	.232	.136	.046	.005	0+	0+	4
	5	0+	0+	0+	.009	.047	.124	.219	.279	.254	.147	.033	.005	0+	5
	6	0+	0+	0+	.001	.010	.041	.109	.209	.296	.294	.149	.051	.003	6
	7	0+	0+	0+	0+	.001	.008	.031	.090	.198	.336	.383	.279	.075	7
	8	0+	0+	0+	0+	0+	.001	.004	.017	.058	.168	.430	.663	.923	8
NOT	E: 0+ repr	esents a	a positiv	ve proba	ability le	ess than	0.0005	5.						(cor	ntinued)

MEAN, VAR DISTRIBUT Key Concept	IANCE, AND STANDARD DEVIATION FOR THE BINOMIAL
In this sect	ion, we consider important o
a	distribution, including
	, and
That is, give	n a particular binomial probability distribution, we can find its
That is, give	n a particular binomial probability distribution, we can find its
That is, give	n a particular binomial probability distribution, we can find its
That is, give	n a particular binomial probability distribution, we can find its, and, and A
That is, give	n a particular binomial probability distribution, we can find its , and , A distribution is a
That is, give	n a particular binomial probability distribution, we can find its , and A distribution is a

5.2. However, it is easier to use the following formulas:

Any Discrete pdf	Binomial Distributions
1. $\mu = \Sigma [x \cdot P(x)]$	1. $\mu = np$
2. $\sigma^2 = \Sigma \left[(x - \mu)^2 \cdot P(x) \right]$	
3. $\sigma^2 = \sum \left[x^2 \cdot P(x) \right] - \mu^2$	2. $\sigma^2 = npq$
$4. \ \boldsymbol{\sigma} = \sqrt{\sum \left[x^2 \cdot P(x) \right] - \mu^2}$	3. $\sigma = \sqrt{npq}$

RANGE RULE OF THUMB

Maximum usual value:

Minimum usual value:

Example 1: Mars, Inc. claims that 24% of its M&M plain candies are blue. A sample of 100 M&Ms is randomly selected.

a. Find the mean and standard deviation for the numbers of blue M&Ms in such groups of 100.

b. Data Set 18 in Appendix B consists of 100 M&Ms in which 27 are blue. Is this result unusual? Does it seem that the claimed rate of 24% is wrong?

Example 2: In a study of 420,095 cell phone users in Denmark, it was found that 135 developed cancer of the brain or nervous system. If we assume that the use of cell phones has no effect on developing such cancer, then the probability of a person having such a cancer is 0.000340.

a. Assuming that cell phones have no effect on developing cancer, find the mean and standard deviation for the numbers of people in groups of 420,095 that can be expected to have cancer of the brain or nervous system.

b. Based on the results from part (a), is it unusual to find that among 420,095 people, there are 135 cases of cancer of the brain or nervous system? Why or why not?

c. What do these results suggest about the publicized concern that cell phones are a health danger because they increase the risk of cancer of the brain or nervous system?