CHAPTER PROBLEM

Can we predict the cost of subway fare from the price of a slice of pizza?

In 1964, Eric Bram, a typical New York City teenager, noticed that the cost of a slice of cheese pizza was the same as the cost of a subway ride. Over the years, he noticed that those two costs seemed to increase by about the same amounts. In 1980, when the cost of a slice of pizza increased, he told the *New York Times* that the cost of subway fare would increase. His prediction proved to be correct.

In the recent New York Times article "Will Subway Fares Rise? Check at Your Pizza Place," reporter Clyde Haberman wrote that in New York City, the subway fare and the cost of a slice of pizza "have run remarkably parallel for decades." A random sample of costs (in dollars) of pizza and subway fares are listed in the table below. The table also includes values of the Consumer Price Index (CPI) for the New York metropolitan region, with the index of 100 assigned to the base period from 1982 to 1984. The CPI reflects the cost of a standard collection of goods and services, including such items as a gallon of milk and a loaf of bread. From the table, we see that the paired pizza/subway fare costs are approximately the same for the given

years. As a first step, we should examine the data visually. Recall from Section 2-4 that a scatterplot is a plot of (x, y) paired data. The pattern of the plotted data points is often helpful in determining whether there is a correlation, or association, between the two variables. The scatterplot shown suggests that there is a correlation between the cost of a slice of pizza and the cost of a subway fare. Because an informal conclusion based on an inspection of the scatterplot is largely subjective, we must use other tools for addressing guestions such as:

- π If there is a correlation between two variables, how can it be described? Is there an <u>equation</u> that can be used to predict the cost of a subway fare given the cost of a slice of pizza?
- π If we can predict the cost of a subway fare, how accurate is that prediction likely to be?
 - π Is there also a correlation between the CPI and the cost of a subway fare, and if so, is the CPI better for predicting the cost of a subway fare?

GRACEY/STATISTICS				CH. 10		
Year	1960	1973	1986	1995	2002	2003
Cost of Pizza	0.15	0.35	1.00	1.25	1.75	2.00
Subway Fare	0.15	0.35	1.00	1.35	1.50	2.00
СРІ	30.2	48.3	112.3	162.2	191.9	197.8

MATH 103 CHAPTER 10 HOMEWORK

10.2 1-5, 10, 14, 18, 19, 20, 23, 27

10.3 1-5, 9, 10, 18, 19, 20, 23, 27

10.1 REVIEW AND PREVIEW

In Chapter 9 we presen	ted methods for making ₋	
from samples. In	n Section 9-4 we consider	red two
samples, with each value	e of one sample somehow	with a value
from the other sample.	In Section 9-4 we consid	lered the
between the	values, and we illus	trated the use of
	tests for	_about the

GRACE	Y/STAT	ISTICS		CH. 10
	of	We	also illustrated the	of
		interval	of the	of
	all su	ch differences. In this c	chapter, we again consider	
	samp	le data, but the objectiv	e is fundamentally different. In	this chapter
	we in	troduce methods for de	termining whether a	, or
			, between two variables exists, a	and whether
	the _		_ is Fo	r
		we c	an identify an	that best
		the	and we can use that equa	tion to
		the _	of one	
	given	the value of the other v	variable.	
10.2	CORF	RELATION Key Concept In Part 1 of this section	we introduce the	
			,	which is a
			_ measure of the	of the
			_between variables re	oresenting
			_ data. Using	_ sample data
		(sometimes called		_), we find the

GRACEY/STATISTICS	CH. 10
value of, then we use that value to	that
there is (or is not) a	
between the variables. In this section we conside	r only
relationships, which means that when	
a the pointsa	
pattern. In Part 2, w	ve discuss
methods of testing for	
DEFINITION	
A <u>correlation</u> exists between two when the	
of one variable are somehow with the values o	f the other
variable.	

EXPLORING THE DATA

r = 1.00

r = -.54

GRACEY/STATISTICS

r = .85

	C = V		тісті	
GRA	(FY/	SIA		
		517		

CH. 10

DEFINITION

The linear correlation coefficient <i>r</i> measures the of the					
between the					
and in a The					
linear correlation coefficient is sometimes referred to as the					
in honor of Karl Pearson who					
originally developed it.					
Because the linear coefficient is calculated using					
data, it is a If					
we had every pair of values, it would be represented by					
(Greek letter rho).					
OBJECTIVE					

GRACEY/STATISTICS

NOTATIC	ON FOR THE LINEA	R CORRELATION	N COEFFICIENT	
n =		$(\Sigma x)^2 =$		
$\Sigma =$		$\Sigma xy =$		
$\Sigma x =$		r =		
2				
$\Sigma x^2 =$		$\rho =$		
REQUIRE	MENTS			
1. The	of		data	s a SRS of
	data			
	· · · · · · · · · · · · · · · · · · ·			
2. Visual e	examination of the		must confirm	n that the
points		a straight-line		
3. Becaus	e results can be		affected by the pres	sence of
	, any		must be	
	if they a	re known to be		The effects
of any oth	er	_should be consid	lered by calculating _	with
and withou	ut the	included.		

CH. 10

GRACEY/STATISTICS		CH. 10
FORMULAS FOR CALCULATING	r	
<i>r</i> =		
<i>r</i> =		
where is the	for the sample value a	nd is
the for the sample	value	
INTERPRETING THE LINEAR CO	ORRELATION COEFFICIENT r	
Computer Software		
If the computed	l from is less than or equal to) the
	, conclude that there is a	
correlation. Otherwise, there is no	ot evidence	to support
the of linea	ar	

GRACEY/STATISTICS	СН. 10
Table A-5	
If the of, denoted	_, exceeds
the value in Table A-5, conclude that there is a cor	relation.
Otherwise, there is not sufficient evidence to the of a linear correlation.	e conclusion
ROUNDING THE LINEAR CORRELATION COEFFICIENT r	
Round the	to
decimal places so that its value can be compared to critical	values in
Table A-5. Keep as many decimal places during the process and then _	
at the end.	
PROPERTIES OF THE LINEAR CORRELATION COEFFICIENT r	
1. The value of is always between and inclusive. ⁻	That is
·	
2. If all values of variable are	_ to a
different, the value of	
change.	
3. The value of is affected by the choice of o	r
4 measures the of a re	elationship.
It is not designed to measure the strength of a	that

GRACEY/STATISTICS	CH. 10
is linear.	
5 is very sensitive to in the sense that a _	
outlier can affect its value.	
COMMON ERRORS INVOLVING CORRELATION	
1. A common is to that	
implies	
2. Another error arises with data based on Avera	ge
variation and may	
the	
3. A third error involves the property of If	there is no
linear, there might be some other	
that is not	
PART 2: FORMAL HYPOTHESIS TEST	
HYPOTHESIS TEST FOR CORRELATION (USING TEST STATIS	TIC r)
$n = \rho =$	
r =	

Example 1: The heights and weights of a sample of 9 supermodels were measured. Using a TI-83/84 Plus calculator, the linear correlation coefficient of the 9 pairs of measurements is found to be 0.360. Is there sufficient evidence at the 5% level to support the claim that there is a linear correlation between the heights and weights of supermodels? Explain.

		·	
$CD\Lambda$	CEV	/стл-	ICC.
як А			
U 1 W		U 17 1	

\mathbf{c}		1	\mathbf{O}
L	П	L	U

HYPOTHESIS TEST	FOR C	ORRELA	TION	(USING	P-VALU	E FROM	A	t-TEST)
HYPOTHESES								
TEST STATISTIC								
<i>t</i> =		_						
P-value: Use			or 1	able		with		
degrees of freedom.								
CONCLUSTON								
CONCLUSION								

Example 2: The paired values of the CPI and the cost of a slice of pizza are listed below.

CPI	30.2	48.3	112.3	162.2	191.9	197.8
Cost of Pizza	0.15	0.35	1.00	1.25	1.75	2.00

a. Construct a scatterplot

b. Find the value of the linear correlation coefficient r

- c. Find the critical values of r from Table A-5 using a significance level of 0.05.
- d. Determine whether there is sufficient evidence to support a claim of a linear correlation between the two variables.

10.3 INFERENCES ABOUT TWO MEANS: INDEPENDENT SAMPLES Key Concept... In section 10-2, we presented methods for finding the value of the

_ correlation _____ and for

CH. 10

GRACEY/STATISTICS	CH. 10
determining whether there is a correlation	n between two
variables. In Part 1 of this section, we find the	of the
line that fits the	sample
data. The equation algebraically describes the	
between the two variables. The best-fitting straight line is co	alled the
line, and its equation is called the	2
equation. We also present methods for	r using the
regression equation to make In Part	[.] 2 we discuss
points, ar	ıd
plots as a tool for correlation and	
results.	
PART 1: BASIC CONCEPTS OF REGRESSION	
Two variables are sometimes related in a	way,
meaning that given a value for one variable, the	of the other
variable is determined without any	,
as in the equation $y = 6x + 5$. Statistics courses focus on	
models, which are equations	with a variable
that is not completely by the other v	ariable.

GRACEY/STATISTICS	CH. 10
DEFINITION	
Given a collection of sample data, the regressi	on equation
algebraically describes the between the tu	wo variables
and The of the e	quation is
called the regression line (aka line of best fit, or least-squares l i	ine).
The regression equation expresses a relationship between the	
variable (aka var	iable or
variable) and (called the	
variable, or variable). The slope and y-inter	cept can be
found using the following formulas:	

The _		line fits the	points	
-------	--	---------------	--------	--

RACEY/STATISTICS	CH. 10
OBJECTIVE	
NOTATION	
	Population Parameter Sample Statistic
y-intercept of regression equation	1
Slope of regression equation	
Equation of the regression line	
REQUIREMENTS	
1. The of	data is a SRS of
data.	
2. Visual examination of the	must confirm that the
pointsa s	traight-line
3. Because results can be	affected by the presence of
, any	must be
if they are I	known to be The effects
of any othersl	nould be considered by calculating with
and without the	included.

GRACEY/STATISTICS	CH. 10					
FORMULAS FOR FINDING THE SLOPE AND y-INTERCEPT	IN					
THE REGRESSION EQUATION						
Slope:						
where is the correlation coefficient, is the						
of the values, and	is the					
standard deviation of the values						
<i>y</i> -intercept:						
ROUNDING THE SLOPE AND THE Y-INTERCEPT						
Round and to	·					
USING THE REGRESSION EQUATION FOR PREDICTIONS 1. Use the regression equation for only	v if the					
of the line on the						
confirms that thethe reasonably well.	ne points					

GRACEY/STATISTICS	CH. 10
2. Use the regression equation for only if th	e
correlation coefficient indicates that there is a	
correlation between the two variables.	
3. Use the regression line for predictions only if the o	do not go
much the of the available data.	
4. If the regression equation does not appear to be	for
making va	lue is its
estimate, which is its	

Example 1: The paired values of the CPI and the cost of a slice of pizza are listed below.

CPI	30.2	48.3	112.3	162.2	191.9	197.8
Cost of Pizza	0.15	0.35	1.00	1.25	1.75	2.00

a. Find the regression equation, letting the first variable be the predictor (x) variable.

PART 2: BEYOND THE BASICS OF REGRESSION

DEFINITION

In working with two variables	by a regression equation, the
marginal change in a is the	that it
changes when the other variable changes by exactly	y unit. The slope
in the regression equation represents the	in
that occurs when changes by unit.	

DEFINITION

In a an <u>outlier</u> is a point lying away from the						
other data points. Paired sample data may include one or more influential points,						
which are	that	affect the	of the			
·	··					

DEFINITION

For a pair of sample	e and	values, the resic	lual is the
between the	san	nple value of	and the that is
	_by using the _		equation. That is,
Residual =			=
DEFINITION			
A	line satisfies	the <u>least-squares</u>	property if the of
their	is the	sum	possible.
DEFINITION			
A <u>residual plot</u> is a		of the _	values after each
of the	V	alues has been	by the
	value	That is, c	a residual plot is a graph of