CHAPTER PROBLEM

Why was the Literary Digest poll so wrong?

Founded in 1890, the Literary Digest magazine was famous for its success in conducting polls to predict winners in presidential elections. The magazine correctly predicted the winners in the presidential elections of 1916, 1920, 1924, 1928 and 1932. In the 1936 presidential contest between Alf Landon and Franklin D. Roosevelt, the magazine sent out ten million ballots and received 1,293,669 ballots for Landon and 972,897 ballots for Roosevelt, so it appeared that Landon would capture 57% of the vote. The size of this poll is extremely large when compared to the sizes of other typical polls, so it appeared that the poll would correctly predict the winner once again. James A. Farley, Chairman of the Democratic National Committee at the time, praised the poll by saying this: "Any sane person cannot escape the implication of such a gigantic sampling of popular opinion as is embraced in The Literary Digest straw vote. I consider this conclusive evidence as to the desire of the

people of this country for a change in the National Government. The *Literary Digest* poll is an achievement of no little magnitude. It is a poll fairly and correctly conducted." Well, Landon received 16,679,583 votes to the 27,751,597 votes cast for Roosevelt. Instead of getting 57% of the vote as suggested by *The Literary Digest* poll, Landon received only 37% of the vote. The Literary Digest magazine suffered a humiliating defeat and soon went out of business. In that same 1936 presidential election, George Gallup used a much smaller poll of 50,000 subjects, and he correctly predicted that Roosevelt would win. How could it happen that the larger Literary Digest poll could be wrong by such a large margin? What went wrong? As you learn about the basics of statistics in this chapter, we will return to the *Literary* Digest poll and explain why it was so wrong in predicting the winner of the 1936 presidential contest.

	MATH 103 CHAPTER 1 HOMEWORK		
1.1	NA	1.4	1,3, 4, 5, 6, 8, 9, 10, 12, 13, 15-19, 21, 24, 25, 28, 30
1.2	1-18, 23, 26, 28	1.5	1-4,6, 9, 11, 12, 13, 15, 16, 18, 19, 21-26, 27, 29, 31
1.3	1-32, 34		

CH. 1

1.1 REVIEW AND PREVIEW

The <i>Literary Digest</i> poll	and George Gallup's poll both used	
	data. Polls collect	from a
	part of a larger group so that we can	learn
something about the	group.	
DEFINITION		
<u>Data</u> are measurements, genders, surve	of ey responses).	(such as
<u>Statistics</u> is the	of planning	
and	, obtaining	, and
then		,
		,
	, and drawing	
based on the	·	
A <u>population</u> is the complete of (scores, people, measurement)	collection of all s, and so on) to be studied.	
A <u>census</u> is the collection of _ member of the population.	from	
A <u>sample</u> is a	of members sele	cted from a
DEFINITION Data are	of ey responses). of planning , obtaining , obtaining , and drawing , and drawing collection of all s, and so on) to be studied.	, and

CH. 1

The *Literary Digest* poll was a ______ of 2.3 million respondents. What would the population consist of?

Remember—garbage in, garbage out! Sample data must be collected through a

process of _______ selection. If sample data are not

collected in an appropriate way, the data may be completely _____

1.2 STATISTICAL THINKING

Key Concept...

When conducting a statistical analysis of data we have collected or analyzing a statistical analysis done by someone else, we should not rely on blind acceptance of mathematical calculations. We should consider these factors:

- π Context of the data
- π Source of the data
- π Sampling method
- π Conclusions
- π Practical implications

650	24249	0
1050	20666	0
967	19413	0
500	21992	0
1700	21399	0
2000	22022	0
1100	25859	0
1300	20390	0
1400	23738	0
2250	23294	0
800	19063	0
3500	30131	0
1200	18698	0
1250	25348	0

2:	250	256	42	1
3	000	230	74	1
1	750	283	49	1
1.	525	246	44	1
1.	500	232	45	1
1.	500	243	78	1
1:	250	232	46	1
1:	200	236	95	1
1	600	232	58	1
42	25	193	25	1
1.	450	203	97	1
9	00	172	56	1
6	75	195	45	1
1	450	207	80	1

Description: These data for the 1991 season of the National Football League were reported by the Associated Press.

Number of cases: 28

Variable Names:

- 1. TEAM: Name of team
- 2. QB: Salary (\$thousands) of regular quarterback
- 3. TOTAL: Total team salaries (\$thousands)
- 4. NFC: National Football Conference (1) or American Football Conference (0)

The Data:			
TEAM	QB	TOTAL	NFC
BILLS	650	24249	0
BENGALS	1050	20666	0
BROWNS	967	19413	0
BRONCOS	500	21992	0
OILERS	1700	21399	0
COLTS	2000	22022	0
CHIEFS	1100	25859	0
RAIDERS	1300	20390	0
DOLPHINS	1400	23738	0
PATRIOTS	2250	23294	0
JETS	800	19063	0
STEELERS	3500	30131	0
CHARGERS	1200	18698	0
SEAHAWKS	1250	25348	0
FALCONS	2250	25642	1
BEARS	3000	23074	1
COWBOYS	1750	28349	1
LIONS	1525	24644	1
PACKERS	1500	23245	1
RAMS	1500	24378	1
VIKINGS	1250	23246	1
SAINTS	1200	23695	1
GIANTS	1600	23258	1
EAGLES	425	19325	1
CARDINALS	1450	20397	1
49ERS	900	17256	1
BUCCANEERS	675	19545	1
REDSKINS	1450	20780	1

Data

CH. 1

Example 1: Refer to the data in the table below. The *x*-values are weights (in pounds) of cars; the *y*-values are the corresponding highway fuel consumption amounts (in mi/gal).

Car Weights and Highway Fuel Consumption Amounts	Car	Weights	and Hig	hway Fue	l Consumpt	ion Amounts
--	-----	---------	---------	----------	------------	-------------

WEIGHT	4035	3315	4115	3650	3565
FUEL	26	31	29	29	30
CONSUMPTION					

- a. Context of the data.
 - i. Are the x-values matched with the corresponding y-values? That is, is each x-value somehow associated with the corresponding y-value in some meaningful way?
 - ii. If the x and y values are matched, does it make sense to use the difference between each x-value and the y-value that is in the same column? Why or why not?

b. Conclusion. Given the context of the car measurement data, what issue can be addressed by conducting a statistical analysis of the values?

c. Source of the data. Comment on the source of the data if you are told the car manufacturers supplied the values. Is there an incentive for car manufacturers to report values that are not accurate?

d. Conclusion. If we use statistical methods to conclude that there is a correlation between the weights of cars and the amounts of fuel consumption, can we conclude that adding weight to a car causes it to consume more fuel?

Example 2: Form a conclusion about statistical significance. Do not make any formal calculations. Either use results provided or make subjective judgements about the results.

One of Gregor Mendel's famous hybridization experiments with peas yielded 580 offspring with 152 of those peas (or 26%) having yellow pods. According to Mendel's theory, 25% of the offspring should have yellow pods. Do the results of the experiment differ from Mendel's claimed rate of 25% by an amount that is statistically significant?

1.3 TYPES OF DATA

Key Concept A goal of statistics is to mak generalizations, about a popu		, or to the terms population and	
sample, we need to know the	meanings of the t	erms	_
and	These new t	terms are used to distinguish	
between cases in which we h	ave data for an en [.]	tire	/
and cases in which we have d	lata for a	only. We	e also
need to know the difference	between	data and	
	data, which disting	guish between different types	of
DEFINITION			
A parameter is a		measurement describing son	ne
characteristic of a			
A <u>statistic</u> is a		_ measurement describing some	
characteristic of a		·	

Example 3: Determine whether the given value is a statistic or a parameter.

a. 45% of the students in a calculus class failed the first exam.

b. 25 calculus students were randomly selected from all the sections of calculus I. 38% of these student failed the first exam.

DEFINITION

Quantitative (aka numerical) data consist of					
representing	or				
Categorical (aka qualitative or attribute) data consist of					
or measurements.	that are not numbers representing counts or				

Give 2 examples of

- a. Quantitative data
- b. Categorical data

DEFINITION

Discrete data result when the number of possible values is either a					
number or a	number.				
<u>Continuous (aka numerical) data</u> result fr	om many				
possible values that correspond to some	scale				
that covers a jumps.	of values without gaps, interruptions or				

CH. 1

Give 2 examples of

a. Discrete data

b. Continuous data

DEFINITION

The nominal level of measurement is characted	rized by data that consists of
	, or
only. The data cannot be arranged in an (such as low to high).	scheme

Give 2 examples of the nominal level of measurement.

	OFV.	ICT A	TICT	
ιяκа	$(C \vdash Y)$	/STA [·]	LIS I	ICS.
.	····	••••		

DEFINITION

Data are at the	ordinal	level	of	measurement	if th	ey can be
	<u></u>					

_________, but differences _______, but differences (obtained by subtraction) between data values either cannot be determined or are meaningless.

Give 2 examples of the ordinal level of measurement.

DEFINITION

The <u>interval level of measurement</u> is like the	level,
with the additional property that the two data values is meaningful. However, data at this level do not hav zero starting point (where none of the quantity is present).	between any ve a natural

Give 2 examples of the interval level of measurement.

DEFINITION

The ratio level of measurement is like the	leve	el,
with the additional property that there is a nat starting place (where zero indicates that none of		or
values at this level, both meaningful.	_ and	_are

Give 2 examples of the ratio level of measurement.

LEVELS OF MEASUREMENT

RATIO	
RATIO	
INTERVAL	
ORDINAL	
NOMINAL	

1.4 CRITICAL THINKING

Key Concept...

This section is the first of many	in which we focus on the	
of	obtained by studying data. T	he aim of this
section is to improve our skills in		_ information
based on	This section shows how to use	
Se	nse to think	about

data and statistics.

"Lies, damned lies, and statistics" is a phrase describing the persuasive power of numbers, particularly the use of <u>statistics</u> to bolster weak <u>arguments</u>, and the tendency of people to disparage statistics that do not support their positions. It is also sometimes colloquially used to doubt statistics used to prove an opponent's point.

DEFINITION

A <u>voluntary response sample</u>	(aka self-select sample) is one in whic	h
be included.	_ themselves	_whether to
be included.		

Give three examples of voluntary response samples.

CORRELATION AND CAUSALITY

Another way to ______ statistical data is to find a statistical association between two variables and to conclude that one of the

variables _____ (or directly affects) the other variable.

DOES NOT IMPLY CAUSALITY!

REPORTED RESULTS

When collecting data from people, it is better to take the measurements yourself instead of asking subjects to report results.

Give two situations in which people might falsely report results.

SMALL SAMPLES

Conclusions should not be based on samples that are far too small.

PERCENTAGES

Some studies will cite

or

percentages. Keep in mind that 100% of a quantity is ALL of the quantity. If there are references made to percentages which exceed 100%, such references are often not justified.

PERCENTAGE REVIEW

"of" means multiply

Percent means per hundred so $n\% = \frac{n}{100}$

Percentage of: Change the % to $\frac{1}{100}$ then multiply.

Fraction to percentage: Change the fraction to a decimal by dividing the

_____ by the _

then multiply by 100 and put in the percent symbol.

Decimal to percentage: Multiply the decimal by 100 and put in the percent symbol.

Percentage to decimal: Remove the percent symbol and divide by 100.

Example 4: Perform the indicated operation.

a. 12% of 1200

c. Write 8.5% as a decimal

b. Write 5/8 as a percentage.

d. Write 15% as a simplified fraction

LOADED QUESTIONS

If survey questions are not worded carefully, the results of a study can be

misleading. Survey questions can be

_____ or intentionally

to elicit a desired response.

ORDER OF QUESTIONS

Sometimes survey questions are unintentionally loaded by such factors as the order of items being considered.

NONRESPONSE

A ______ occurs when someone either refuses to respond or is unavailable. Why do you think that more and more people are refusing to participate in polls?

MISSING DATA

Results can sometimes be dramatically affected by missing data. This can be due to a random occurrence such as a subject dropping out of a study for reasons unrelated to the study. Some data are missing due to special factors such as the tendency of people with low incomes to be less likely to report their income.

SELF-INTEREST STUDY

Some parties with interests to promote will sponsor studies. We should be wary of surveys in which the sponsor can enjoy monetary gains from the results.

PRECISE NUMBERS

Numbers which are estimates should be rounded. 2,234,786 should be rounded to 2 million.

DELIBERATE DISTORTIONS

1.5 COLLECTING SAMPLE DATA

Key Concept...

The method used to collect sample data influences the quality of our statistical

analysis. Of particular importance is the _____

. If sample

data are not collected in the appropriate way, the data may be so completely useless that no amount of statistical torturing can salvage them.

DEFINITION

In an observational study , we	_ and measure specific
characteristics, but we don't attempt to being studied.	the subjects
In an <u>experiment</u> , we apply some	and then proceed to
its Subjects in experiments are called experimental units.	on the subjects.

CH. 1

Give one example of an

a. Observational study

b. Experiment

DEFINITION

A <u>simple random sample</u> of n subjects is selected in such a way that every possible sample of the same size n has the same chance of being chosen.

DEFINITION

In a random sample , members from the	are selected
in such a way that each	_ member in the population has
an chance of being s	elected.
A probability sample involves selecting members fr	om a
in such a way that each member of the population h (but not necessarily the same) chance of being selec	

CH. 1

DEFINITION

In <u>systematic sampling</u> , we select some then select every <i>k</i> th (such as every 20 th) element in the popu	
With <u>convenience sampling</u> , we simply use results that are ve to get.	ry
With <u>stratified sampling</u> , we the least two different subgroups (aka strata) so that subjects w	
subgroup share the same characteristics, such as	or
bracket, then we draw a sample from each	
In <u>cluster sampling</u> , we first the	e population area into
sections or, then	
select some of those clusters, and then choose members from those selected clusters.	the

Example 5: Identify which type of sampling is used: random, systematic, convenience, stratified, or cluster.

- a. Every 8th driver is stopped and interviewed at a sobriety checkpoint.
- b. In a neighborhood, specific streets are randomly selected and all residents on the selected streets are polled.
- c. At Mira Costa College, 500 male students and 500 female students are randomly selected to participate in a study.

- d. Ms. Gracey surveyed the students in her class.
- e. Telephone numbers are randomly generated. Those people are selected to be interviewed.

DEFINITION

In a <u>cross-sectional study</u> ,	data are	_,
	, and	at one point in
time.		
In a <u>retrospective (aka cas</u>	<u>e-control) study</u> , data are collected	from the
records, interviews, etc).	by going back through time (throug	n examination of
In a prospective (aka longit	<mark>udinal or cohort) study</mark> , data are co	llected in the
	from groups sharing common factor	s (called cohorts).

Give one example of a

- a. Cross-sectional study
- b. Retrospective study

c. Prospective study

DESIGN OF EXPERIMENTS

RANDOMIZATION

Subjects are assigned to different groups through a process of random selection.

REPLICATION

Replication is the repetition of an experiment on more than one subject. Use a sample size that is large enough to let us see the true nature of any effects, and obtain the sample using an appropriate method, such as one based on randomness.

BLINDING

Blinding is a technique in which the subject doesn't know whether he or she is receiving the treatment or the placebo. In a double-blind experiment, both the subject and the investigator do not know whether the subject received the treatment or the placebo.

DEFINITION

<u>Confounding</u> occurs in an experiment when you are not able to distinguish among

the _____

_____ of different _____

COMPLETELY RANDOMIZED EXPERIMENTAL DESIGN

Assign subjects to different treatment groups through a process of

selection.

RANDOMIZED BLOCK DESIGN

A **block** is a group of subjects that are _____, but

blocks differ in ways that might affect the ______ of an experiment. If testing one or more treatments within different blocks, use this

experimental design.

- 1. Form blocks (or groups) of subjects with similar characteristics.
- 2. Randomly assign treatments to the subjects within each block.

RIGOROUSLY CONTROLLED DESIGN

Carefully assign subjects to different treatment groups, so that those given each

treatment are _____ in ways that are important to the

MATCHED PAIRS DESIGN

Compare exactly two treatment groups (such as treatment and placebo) by using subjects matched in pairs that are somehow related or have similar characteristics.

SUMMARY

- 1. Use ______ to assign subjects to different groups.
- 2. Use _____ by repeating the experiment on enough subjects so that effects of treatments or other factors can be clearly seen.

 3. ______ the effects of ______ by using such techniques as blinding and a completely randomized experimental design.

DEFINITION

A <u>sampling error</u> is the difference between a result
and the true result; such an error results from chance sample fluctuation.
A nonsampling error occurs when the sample data are incorrectly
, recorded, or (such
as by selecting a biased sample, using a defective measurement instrument, or copying the data incorrectly).

Example 6: Identify the type of observational study (cross-sectional, retrospective, or prospective)

- a. Physicians at the Mount Sinai Medical Center plan to study emergency personnel who worked at the site of the terrorist attacks in New York City on September 11, 2001. They plan to study these workers from now until several years into the future.
- b. University of Toronto researchers studied 669 traffic crashes involving drivers with cell phones. They found that cell phone use quadruples the risk of a collision.