Example 4: In a sample of seven cars, each car was tested for nitrogen-oxide emissions (in grams per mile) and the following results were obtained: 0.06, 0.11, 0.16, 0.15, 0.14, 0.08, 0.15 (based on data from the EPA).

a. Assuming that this sample is representative of the cars in use, construct a 98% confidence interval estimate of the mean amount of nitrogen-oxide emissions for all cars.

h = 1, df = 6 $\begin{array}{l} x = 0.02 , x/2 = 0.01 \\ t_{6,0,01} = 3.143 \\ \overline{x} = 0.121 , S = 0.039 \\ \hline \end{array} \quad \begin{array}{l} E \approx 0.0463 \\ \overline{x} - E < u < \overline{x} + E \\ \hline 0.075 < u < 0.167 \\ \hline \end{array}$ t 6,0,01 = 3.143 x=0.121, S=0.039 b. If the EPA requires that nitrogen-oxide emissions be less than 0.165 g/mi, can we safely conclude that this requirement is being met?

NO, since the likely emission amounts include amounts greater than 0.165 g/mi.

Example 5: Listed below are 12 lengths (in minutes) of randomly selected movies from Data Set 9 in Appendix B.

110 96 125 94 132 120 136 154 149 94 119 132

a. Construct a 99% confidence interval estimate of the mean length of all movies.

See mare mathchick.net

b. Assuming that it takes 30 minutes to empty a theater after a movie, clean it, allow time for the next audience to enter, and show previews, what is the minimum time that a theater manager should plan between start times of movies, assuming that this time will be sufficient for typical movies?

8.1 REVIEW AND PREVIEW

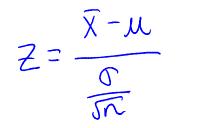
DEFINITION

In statistics a humathesis is a claim on Stateman
In statistics, a <u>hypothesis</u> is a <u>Cam</u> or <u>Statement</u> about a
A <u>hypothesis test (aka test of significance)</u> is a <u>plocedule</u> for testing a
dain about a poperty of a population.
8.2 BASICS OF HYPOTHESIS TESTING
PART 1: BASICS CONCEPTS OF HYPOTHESIS TESTING
Code and and
The methods presented in this chapter are based on the <u>lare</u> Went <u>we</u> for
inferential statistics
RARE EVENT RULE FOR INFERENTIAL STATISTICS
If, under a given assumption, the <u>probability</u> of a particular observed is extremely
, we conclude that the
WORKING WITH THE STATED CLAIM: NULL AND ALTERNATIVE HYPOTHESES
The <u>null hypothesis</u> denoted by H_0 is a <u>Statement</u> that the value of a
population parameter is equal to some
<u>claimed</u> value. The term <u>null</u> is used to <u>indicate</u> <u>no</u>
change or no effect or no difference.
The <u>alternative hypothesis</u> denoted by <u>HA</u> or <u>H</u> or <u>HA</u> is the <u>catement</u>
that the <u>purameter</u> has a value that somehow <u>differs</u> from the
pull hypothosis.

For the methods of this chapter, the <u>Symbolic</u> form of the <u>atternative</u> <u>hypothesis</u> must use one of these symbols: $<$, $>$, \neq . IDENTIFYING <u>Ho</u> AND <u>H</u>	
START	
Identify the specific <u>Claim</u> or <u>hyperhonic</u> to be tested Express it in <u>Symbolic</u> form	
2 Give the symbolic form that must be <u>ful</u> when the <u>original</u> <u>claum</u> is <u>false</u>	
3 • Using the two <u>Cymbolic</u> expressions obtained so far, identify the <u>hull</u> <u>hypotheoin</u> and the <u>operative</u> <u>hypothosin</u> <u>h</u> • <u>h</u> • <u>h</u> is the symbolic expression that <u>des</u> <u>not</u> contain <u>equality</u> • <u>h</u> is the symbolic expression that the <u>parameter</u> <u>equals</u> the <u>fixed</u> value being	

Example 1: Examine the given statement, then express the null hypothesis and the alternative hypothesis in symbolic form.

- a. The majority of college students have credit cards.
- $H_{o}: P = \frac{1}{2}$ $H_{i}: P > \frac{1}{2}$


b. The mean weight of plastic discarded by households in one week is less than 1 kg.

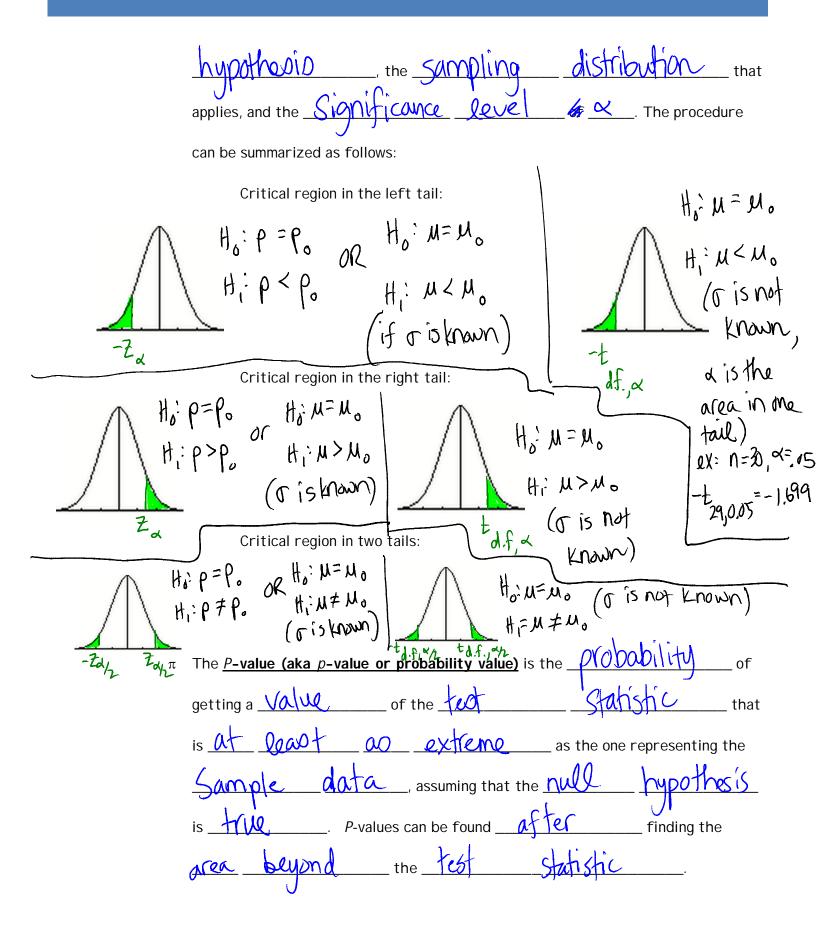
$$H_0: \mu = 1 \text{ kg}$$

 $H_1: \mu < 1 \text{ kg}$

Test statistic for proportion:

$$Z = \hat{p} - p$$
 p is the pop. proportion we assume to be
 $T_{1}^{p_{2}}$ true in the null hypotheses.

Test statistic for mean:



t= s s s s It is the value we assume to be true in the null hypothesis

Example 2: Find the value of the test statistic. The claim is that less than ½ of adults in the United States have carbon monoxide detectors. A KRC Research survey of 1005 adults resulted in 462 who have carbon monoxide detectors.

TOOLS FOR ASSESSING THE TEST STATISTIC: CRITICAL REGION, SIGNIFICANCE LEVEL, CRITICAL VALUE, AND P-VALUE

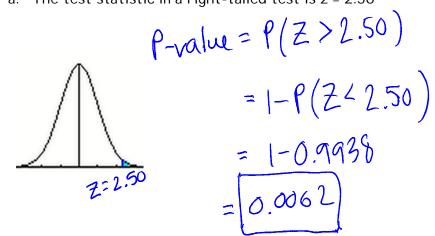
The test	Statistic	alone usually does	not give us enough
information to make a	decision about the <u>Claim</u>	_being _tested	The following tools
can be used to UNA	astand and interpret	the	
statistic			
π	The <u>critical region (aka rejecti</u>	on region) is the <u>Set</u>	of all
-	Values of the test	<u>Statistic</u>	that cause us to
l	leject the <u>Nul</u>	l hypo	thesis to
π	J The <u>significance level (denoted</u>	by) is the proba	2011ythat the
-	test statistic	will fall in the	<u> </u>
-	(eqion when the	null hypo	healo_is
ć	actually <u>true</u> . If the <u>test</u>		falls in the
	critical region	, we _ (k)	the
-	pull hypothe	<u>2515</u> , so <u>K</u> is	the
-	probability of maki	ng the Mistake	_of yethe
1	the <u>Null hypothes</u>	Swhen it is	L
π	A <u>critical value</u> is any value that	Separates the	, critical
-			the test
	Statistic that do	hot lead to K	jection
(of the <u>null hypo</u>	thea	ritical
-	<u>volues</u> depen	d on the nature of the	ul

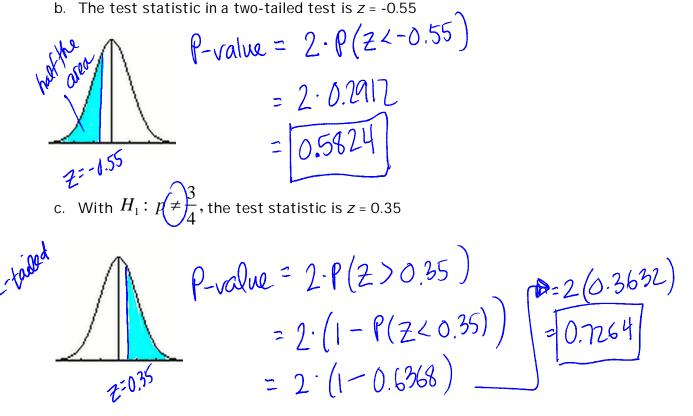
$$P(z < tot statistic)$$

$$P(z < tot statistic)$$

$$P(t < tot statistic)$$

$$P(z > tot statistic)$$


-


DECISIONS AND CONCLUSIONS

<i>P</i> -value method: Usi	ng the <u>Significance level</u> x:
	If P-value , <u>reject to</u>
	If P-value _>, failto reject Ho
Traditional method: If	hole at tal
réje	ection (critical) region, reject Ho . If the
te	st statistic does not rall within
the	rejection region, fail to reject
H	
Confidence intervals:	A confidence interval estimate of a
	population parameter contains the likely
	values of that <u>parameter</u> . If a <u>Confidence</u>
	interval does not include a
	claimed value of a population parameter,
	<u>reject</u> that <u>claim</u> .

Example 3: Use the given information to find *P*-value.

a. The test statistic in a right-tailed test is z = 2.50

d. With H_1 : p < 0.777, the test statistic is z = -2.95

Example 4: State the final conclusion in simple non-technical terms. Be sure to address the original claim. Original claim: The percentage of on-time U.S. airline flights is less than 75%. I nitial conclusion: Reject the null hypothesis.