ROUND-OFF RU	JLE FOR SAMPLE S	SIZE n				
If the	outedsan	nple size <u>N</u> is	not al	whole_	number	, round
the value of <u>h</u>	to the next	Larger	whole	<u> </u>	umber	

Example 4: A researcher wants to estimate the mean grade point average of all current college students in the United States. She has developed a procedure to standardize scores from colleges using something other than a scale from 0 and 4. How many grade point averages must be obtained so that the sample mean is within 0.1 of the population mean. Assume that a 90% confidence level is desired. Also assume that a pilot study showed that the population standard deviation is estimated to be 0.88.

$ -\alpha = 90\%$ $\alpha = 0.1$ $\alpha = 0.0S$	$n = \left(\frac{2\lambda_{12} \sigma}{E}\right)^{2} \qquad n \approx 210$ $n = \left(\frac{1.645 \cdot 0.88}{0.1}\right)^{2}$
$Z_{0.05} = 1.645$ $\sigma = 0.88$	$n = \left(\frac{1.6-0.00}{0.1}\right)^{-1}$
E= 0.1	
Key Concept. In this secti 	on, we present methods for <u>estimation</u> a <u>population</u> when the population <u>Standar A deviation</u> when the population <u>Standar A deviation</u> the known. With <u>C</u> unknown, we use the <u>Student t</u> <u>the button</u> instead of a <u>normal</u> <u>distribution</u> ,
assuming the	histribution was developed by William Gosset (1876-1937). William
Gosset was a	a Guinness Brewery employee. He needed a distribution that could be used with small
samples. The	e brewery where he worked did not the publication of research results so he
published un	der the pseudonym "Student from the pseudonym "Student from the pseudonym "Student for the pseudonym "". In real circumstances,

(On Drac and POINT ESTIMATE X is an UNDIADED mean umple The estimator of the nvenr t DISTRIBUTION STUDENT normo If a population has a distribution, then the distribution is a for Hidor _ is referred to as a all samples of size 101 know the value of the Because we deviation we it with the value of the \underline{Samp} 2 but this introduces another source of amples especially _. In order to maintain a desired level ana , we compensate for this additional unreliability by -Iden Ce 0^{-1} : we use 1400 laral tx/2_ that are _ than the values ___ of ta 2 from the OOC 10 value, 10 can be found 091 701 or using

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

DEFINITION

The number of <u>degrees of freedom</u> for a collection of <u>Sample</u> <u>data</u> is
the <u>number</u> of <u>sample</u> values that can <u>vary</u>
after certain restrictions have been $1000Sed$ on all data values. The number of $4egree0$ of $freedom$ is often abbreviated as $d.f.$.
For example: If 10 students have quiz scores with a mean of 80, we can freely assign values to the first
scores, but the score is then
<u>Swm</u> of the 10 scores must be <u>\$00</u> so the <u>016</u> score must be
500 minus the SUM of the First 9 scores.
Because the first 9 scores can be <u>freely</u> selected to any values, we say there are <u>degrees</u> of <u>freedom</u> <u>available</u> . For the applications of this section, the number of degrees of freedom is simply the <u>Sample</u> <u>Size</u> <u>minus</u> <u>1</u> .

Example 1: A sample size of 21 is a simple random sample selected from a normally distributed population. Find the critical value $t_{lpha/2}$ corresponding to a 95% confidence level.

nple 1. pulation. Finc A=21 A=21 A=21-1=20 1-a=0.95 a=0.05 area in <math>2ba t = t d.f., % = 20, 0.025 = 2.086

PROCE	DURE FOR CONSTRUCTING A CONFIDENCE INTERVAL FOR μ with unknown σ .
1.	Verify that the <u>cean ender are satisfield</u> .
2.	Using <u>N-1</u> <u>degrees</u> of <u>freedom</u> , refer to table
	A3 or use <u>technology</u> to find the <u>critical</u>
	Value that corresponds to the desired confidence
	level
	refer to the " in <u>One fail</u> ". tdf, an
3.	Evaluate the Margin of error $E = t_d f_0 y_2 f_1^{-1}$
4.	Using the value of the <u>Calculated</u> <u>Margin</u> of <u>enor</u>
	\underline{E} and the value of the <u>Sample</u> <u>Mean</u> \underline{X} , find the values
	of the <u>confidence</u> interval <u>limits</u> :
	$\underline{X} - \underline{E}$ and $\underline{X} + \underline{E}$. Substitute those values in the <u>general</u>
	format for the confidence interval.

5. Round the resulting values by using the following round-off rule.

Round-off rule for confidence intervals used to estimate $\,\mu$

1. When using the <u>ONGINAL</u> set of <u>data</u> to <u>Construct</u>
a confidence interval, round the confidence interval
limits to one more docimal place than is used for
the <u>Original</u> set of data.
2. When the Original set of data is UNHOWN and only the
Summary statistics (x,s,n) are used, round the confidence
Imits to the same number of digits as the <u>Sample</u> mean.

Example 2: In a study designed to test the effectiveness of acupuncture for treating migraine, 142 subjects were treated with acupuncture and 80 subjects were given a sham treatment. The numbers of migraine attacks for the acupuncture treatment group had a mean of 1.8 and a standard deviation of 1.4. The numbers of migraine attacks for the sham treatment group had a mean of 1.6 and a standard deviation of 1.2.

a. Construct a 95% confidence interval estimate of the mean number of migraine attacks for those treated with acupuncture.

 $t_{141,0.025} = t_{100,0.025} | \overline{X} - E < \mu < \overline{X} + E | 1.8 - 0.233 < \mu < 1.8 + 0.233$ n= 142, d.f. = 141 $\bar{x} = 1.8$ 1.6<M<2.0 = 1.984 5= 1.4 1-d= 0,95 $E = 1.984 \cdot \frac{1.4}{1007} \approx 0.233$ an 0.05 an 0.05 b. Construct a 95% confidence interval estimate of the mean number of migraine attacks for those $t_{79,0.025} = t_{80,0.025} | \overline{X} - E < \mu < \overline{X} + E \\ = 1.990 \\ E = 1.990 \cdot \frac{1.2}{180} \approx 0.267 | 1.3 < \mu < 1.9 \\ \hline{1.3} < \mu < 1.9 \\ \hline{1.4} < \mu < 1.9 \\ \hline{1.5} <$ given a sham treatment. n = 80, d!x=1.6 1-a=0,95

×/2 = 0.025 Compare the two confidence intervals. What do the results suggest about the effectiveness of acupuncture?

x= 1,05

IMPORTANT PROPERTIES OF THE STUDENT t DISTRIBUTION

	RTAIL PROPERTIES OF THE STOLENT & DISTRIBUTION
1.	The Student <i>t</i> distribution is $different$ for different <u>SAMPLES</u>
	<u>SIZES</u>
2.	The Student <i>t</i> distribution has the <u>Same</u> general <u>Sumpetic</u> <u>bell</u> Smpe
	as the <u>Standard</u> <u>pormal</u> distribution, but it reflects the greater
	variability (with wider distributions) that is expected of
	Small samples.
3.	The Student <i>t</i> distribution has a mean of (just as the $Standard$
	<u>Normal</u> distribution has a mean of).
4.	The standard <u>deviation</u> of the Student t distribution <u>varies</u> with the
	Samplesize, but isgreaterthan (unlike the
	Standard $pamal$ distribution, which has $\underline{\sigma}$.
5.	As the <u>Sample</u> Size increases, the Student t
	distribution gets <u>closer</u> to the <u>standard</u> <u>Normal</u>
	distribution
	0.40
	0.35 df = 1 df = 2
	0.30 df = 2 df = 5
	$ \begin{bmatrix} 0.25 \\ 0.20 \end{bmatrix} - df = \infty $
	0.15
	0.10
	0.05 - 0.00 - 4 - 2 0 2 4
	-4 -2 0 2 4

CHOOSING THE APPROPRIATE DISTRIBUTION It is sometimes difficult to decide whether to use the <u>Standar</u> <u>por Mal</u> <u>Aistribution</u> or the <u>Statent</u> <u>t</u> <u>Aistribution</u> .							
METHOD	CONDITIONS						
Use normal (z) distribution	σ <u>Known</u> and <u>Normally</u> distributed population or						
	σ known and $\Lambda^2 \gamma_0$						
Use <i>t</i> distribution	$\sigma_{not} (nown_{and})$ and $normally_{and}$ distributed population $\sigma_{not} (nown_{and})$ and n > 30						
Use a nonparametric method or bootstrapping	Population is <u>PT</u> <u>pofmally</u> distributed and <u>N ≤ 30</u>						

FROOK/FOR LISE W/ITH ΜΔΡΙΟ ΤΡΙΟ

Example 3: Choosing distributions. You plan to construct a confidence interval for the population mean μ . Use the given data to determine whether the margin of error *E* should be calculated using a critical

value of $\mathcal{Z}_{\sigma/2}$ from the normal distribution, $t_{\sigma/2}$ from a t distribution, or neither (methods of this chapter cannot be used).

a. $n=7, \overline{x}=80, s=8$, and the population has a very skewed distribution

neither

b. $n = 150, \ \overline{x} = 23.5, \ \sigma = 0.2$, and

the population has a skewed distribution

Zah

c. n=10, $\overline{x}=65$, s=12, and the population has a normal distribution

d. $n=13, \ \overline{x}=5, \ \sigma=3$, and the population has a normal distribution

Zan

e. n = 92, $\overline{x} = 20.7$, s = 2.5, and the population has a skewed distribution

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

FINDING A POINT ESTIMATE AND E FROM A CONFIDENCE INTERVAL
The <u>Sample mean</u> \overline{X} is the value <u>midway</u>
between the confidence interval limits
The Margin of error E is one half the
difference between those limits.
Point estimate of μ : $\chi = upper CI limit + lower CI limit = upper CI limit + lower CI limit = Upper CI limit = 2$
2
USING CONFIDENCE INTERVALS TO DESCRIBE, EXPLORE, OR COMPARE DATA
In some cases, we might use a <u>confidence</u> interval to achieve an ultimate

In some cases, we might use a _	CONTINUNCE	_ meme	to achieve an ultimate
goal of estimating	the	of a	21
parameter			ntervals
might be among the different _		used to describe	· ,
oxplore, or	Compare	data sets. When two	or more data sets have
overlapping	confidence interv	vals, one could	24
			- <u></u>

conclude that there does not appear to be a significant difference between the estimated

means

TI-83/84 PLUS

EDIT_CALC **MESHE** 2^TT-Test... 3:2-SampZTest... 4:2-SampTTest... 5:1-PropZTest... 6:2-PropZTest... 7:71ptopuol ZInterval… TInterval…

TInterval Inet:Data **State** X:1.8 Sx:1.4 n:142 C-Level:.95 Calculate

Interval (1.5677,2.0323) x=1.8 Sx=1.4

evel:.95 alculate

n:80

TInterval Inpt:Data **State** X:1.6 Sx:1.2

[Interval (1.333,1.867) x=1.6 Sx=1.2 n=80

Example 4: In a sample of seven cars, each car was tested for nitrogen-oxide emissions (in grams per mile) and the following results were obtained: 0.06, 0.11, 0.16, 0.15, 0.14, 0.08, 0.15 (based on data from the EPA).

a. Assuming that this sample is representative of the cars in use, construct a 98% confidence interval estimate of the mean amount of nitrogen-oxide emissions for all cars.

h = 1, d.f. = 6 $\begin{array}{l} x = 0.02, x/2 = 0.01 \\ t_{6,0,01} = 3.143 \\ \overline{x} = 0.121, \ S = 0.039 \\ \hline n.075 < \mu < 0.16 \end{array}$ $t_{6,0,01} = 3.143$ $\bar{\chi} = 0.121$, S = 0.039

b. If the EPA requires that nitrogen-oxide emissions be less than 0.165 g/mi, can we safely conclude that this requirement is being met?

Example 5: Listed below are 12 lengths (in minutes) of randomly selected movies from Data Set 9 in Appendix B.

110	96	125	94	132	120	136	154	149	94	119	132
-----	----	-----	----	-----	-----	-----	-----	-----	----	-----	-----

a. Construct a 99% confidence interval estimate of the mean length of all movies.

b. Assuming that it takes 30 minutes to empty a theater after a movie, clean it, allow time for the next audience to enter, and show previews, what is the minimum time that a theater manager should plan between start times of movies, assuming that this time will be sufficient for typical movies?