\qquad , round iss ouse of h up to sis ere -forger whole number

Example 4: A researcher wants to estimate the mean grade point average of all current college students in the United States. She has developed a procedure to standardize scores from colleges using something other than a scale from 0 and 4. How many grade point averages must be obtained so that the sample mean is within 0.1 of the population mean. Assume that a 90% confidence level is desired. Also assume that a pilot study showed that the population standard deviation is estimated to be 0.88 .

$$
\begin{aligned}
1-\alpha & =90 \% \\
\alpha & =0.1 \\
\alpha / 2 & =0.05 \\
z_{0.05} & =1.645 \\
\sigma & =0.88 \\
E & =0.1
\end{aligned}
$$

$$
n=\left(\frac{1.645 \cdot 0.88}{0.1}\right)^{2}
$$

Key Concept...
In this section, we present methods for \qquad - population mean

$$
n=\left(\frac{z_{\alpha / i} \cdot \sigma}{E}\right)^{2}
$$

$\theta n \approx 210$

$\sigma_{\text {is or theme with }}$ \qquad σ watrosersm aus use thee Student
\qquad standard deviation water the poppution
\qquad -distribution \qquad iss cast of o normal \qquad distribution

Gosse was a Guinness Brewery employee. He needed a distribution that could be used with small allow
\wedge
samples. The brewery where he worked did not the publication of research results so he

 realistic - and - practical

POINT ESTIMATE
The -_ Sample mean --- \bar{X}_{-}is an unbiased_- cstinatoro of tic -population mean μ.
STUDENT t DISTRIBUTION
\qquad
If a population has a _normal distribution, then the distribution "- student t distribution
 t distribution scare we- do not population standard deviation Know the value of the population stander deviation σ es timate "west sis sura ce s s ti Sample Jundard

 confidence level metes sta confidence interval wider critical values tax, was ace -larger critical values oz Ex h stow to normal distribution acritical value of tape carcsfoema wars- technology- Table A-3
\qquad of sample values \qquad t fat can _Vary after certain restrictions have been imposed on all data values. The number of --degrees
\qquad
\qquad freedom is often ab br e coated as $d f$
For example: If 10 students have quiz scores with a mean of 80 , we can freely assign values to the first
\qquad
9 scores, but the \qquad Doth score is then \qquad determined The Sum \qquad of the 10 scores must be \qquad 800 both \qquad score must 6 b 800 \qquad minus the sum \qquad - of the first ------ \qquad scores.
Because
\qquad of freedom selected to any values, we say there
\qquad freedom
available
For the applications of this section, the number of degrees of freedom is simply the Sample size minus 1

Example 1: A sample size of 21 is a simple random sample selected from a normally distributed population. Find the critical value $t_{\alpha / 2}$ corresponding to a 95% confidence level.

$$
\begin{aligned}
& n=21 \\
& \text { def. }=21-1=20 \\
& 1-\alpha=0.95 \\
& \alpha=0.05 \\
& \text { area in } 2 \text { tails } \\
& \text { or } 0.025 \text { are } \\
& t=t \\
& \text { def., }, / 2 \text { 20,0,025 } \\
& =2.086
\end{aligned}
$$

1. verify that the requirement h
2. using $n=1$ degrees of freedom A3 ---or use Technology to find the critical

level ------ for the confidence - level

3. Tovatatet the Margin - of error $E=t d f_{1} \alpha_{2} \frac{s}{n}$
4. using the value of the calculated --- - - -
 of the confidence interval ----- limits $\bar{X}-E--\quad$ and $\bar{X}+E \quad-\quad$ ubs statute those values st the general format ---- for for confidence interval
5. Round the resulting values by using the following round-off rule.
$\mathcal{R O} \mathcal{U} \mathcal{N D}$ - OFF RULE FOR $\operatorname{CONFIDENCE} I \mathcal{N T E R V A L S}$ USED TO ESTIMATE μ
6. when us isis the original ---- se of data -- to construct a corfificuce - interval _i round ste confidence interval limits to one more - decimal -- place tran is sues for the original -- set of data.
7. when the - original set of data is unknown --- ant orgy the
summary statistics \bar{X}_{1}, n, are used, round the confidence
interval interval ----- iritis to to fo same member of of digits as the -Sample

Example 2: In a study designed to test the effectiveness of acupuncture for treating migraine, 142 subjects were treated with acupuncture and 80 subjects were given a sham treatment. The numbers of migraine attacks for the acupuncture treatment group had a me an of 1.8 and a standard deviation of 1.4. The numbers of migraine attacks for the sham treatment group had a mean of 1.6 and a standard deviation of 1.2.
a. Construct a 95% confidence intervalestimate of the mean number of migraine attacks for those
6. Construct a 95% confidence intervalestimate of the mean number of migraine attacks for those given a sham treatment.

$$
\bar{x}-E<\mu<\bar{x}+E
$$

$$
1.6-0.267<\mu<1.6+0.267
$$

$$
1.3<\mu<1.9
$$

c. Compare the two confidence intervals. What do the results suggest about the effectiveness of acupuncture?

Acupuncture does not sem to be an effective treatments.

$$
\begin{aligned}
& n=80, d f=79 t_{79,0.025}=t_{80,0.025} \\
& \bar{x}=1.6 \\
& s=1.2 \\
& 1-\alpha=0.95 \\
& \alpha=0,05 \\
& \alpha / 2=0.025 \\
& =1.990 \\
& E=1.990 \cdot \frac{1.2}{880} \approx 0.267
\end{aligned}
$$

$$
\begin{aligned}
& \text { treated with ac puncture. } \\
& n=142, d . f=141 \\
& \bar{x}=1.8 \\
& s=1.4 \\
& 1-\alpha=0,95 \\
& \alpha=0.05 \\
& \alpha / 2=0.025 \\
& t_{141,0.025}=t_{180,0.025} \\
& \bar{x}-E<\mu<\bar{x}+E \\
& 1.8-0.233<\mu<1.8+0.233 \\
& =1.984 \\
& 1.6<\mu<2.0
\end{aligned}
$$

1. The Student t distribution is \qquad sizes
2. The student distribution as the - Same general symmetric bell-ifhape as the standard --- normal \qquad distribution, but it reflects the greater variability , cum wider
small samples
3. The Student t distribution has a mean of \qquad (just as the \qquad normal \qquad Astrutrututor tass ancon of of \qquad 0 ,
4. The seaneraroud-_deviation of fris suufent casts ifuruion \qquad varies - wits fuse Sample .size but is - Greater
\qquad than - 1 - mantes tic

5. as ste - Sample size increases --- the stutter. distristuter gest -Closer
\qquad co re standard normal distribution

distribution

Example 3: Choosing distributions. You plan to construct a confidence intervalfor the population mean μ. Use the given data to determine whether the margin of error \mathcal{E} should be calculated using a critical value of $Z_{\sigma / 2}$ from the normal distribution, $t_{\sigma / 2}$ from a t distribution, or neither (methods of this chapter cannot be used).
a. $n=7, \bar{x}=80, s=8$, and the
population has a very skewed distribution
neither
6. $n=150, \bar{x}=23.5, \sigma=0.2$, and the population has a skewed distribution

$$
z_{\alpha / 2}
$$

c. $n=10, \bar{x}=65, s=12$, and the population has a normal distribution $t_{\alpha / 2}$
d. $n=13, \bar{x}=5, \sigma=3$, and the population has a normal distribution

Point estimate of μ :
$\bar{x}=$ upper CI limit +1 over CI limit
Margin of error:

$$
E=\frac{\text { upper CI limit-lower CI limit }}{2}
$$

In some cases, we might use a condone interval \qquad to achieve an ultimate spoof. estimating
parameter tr e value
\qquad of a population
 \qquad describe - overlapping
conclude that there does not appear to be a significant difference between the estimated
means

Example 4: In a sample of seven cars, each car was tested for nitrogen-oxide emissions (in grams per mile) and the following results were obtained: 0.06, 0.11, 0.16, 0.15, 0.14, 0.08, 0.15 (based on data from the EPA).
a. Assuming that this sample is representative of the cars in use, construct a 98% confidence interval estimate of the mean amount of nitrogen-oxide emissions for all cars.

6. If the $\mathcal{E P A}$ requires that nitrogen-oxide emissions be less than $0.165 \mathrm{~g} / \mathrm{mi}$, can we safely conclude that this requirement is being met?

Example 5: Listed below are 12 lengths (in minutes) of randomly selected movies from Data Set 9 in Appendix \mathcal{B}.

110	96	125	94	132	120	136	154	149	94	119	132

a. Construct a 99% confidence intervalestimate of the mean length of all movies.
6. Assuming that it takes 30 minutes to empty a theater after a movie, clean it, allow time for the next audience to enter, and show previews, what is the minimum time that a theater manager should plan between start times of movies, assuming that this time will be sufficient for typical movies?

