5.2 RANVDO $\mathcal{M} \operatorname{VARI} \operatorname{ABLES}$ $\mathcal{D E F I N I T I O X}$

A random variable is a _ Var_jable \qquad (typically represented by _X_) that has a --single \qquad numerical \qquad value, determined by chance
for each outcome of a procedure
$\mathcal{D E F I X I T I O N}$
A probability distribution is a description \qquad that gives the probability for each value of the random variable . It is often expressed in the format of a \qquad graph table formula
$\mathcal{N} O \mathcal{T} \mathcal{E}$
If a probability value is very small, such as 0.000000123 , we can represent it as $0+$ in a table, where $0+$
indicates that the probability value is a very small positive number. Why not represent this as 0 ?
Because the event is still possible and a probability of zero

Recall the tree diagram we made for a couple having 3 children:

means the event is
impossible.
Let X be the \# of girls the couple has

x	$P(x)$
0	$P(x=0)=1 / 8$
1	$P(x=1)=3 / 8$
2	$P(x=2)=3 / 8$
3	$P(x=3)=1 / 8$

 --valued \qquad or a ----countable number of values, where re countable refers to the fact that there might be \qquad many values, but they can be \qquad associated with a _ counting process, so that the number of values is 0 or 1 or 2 or 3 , etc.
\mathcal{A} continuous random variable has \qquad infinitely
\qquad continuous -- meaowrements on a --associated with \qquad interruptions -gaps or

Example 1: Give two examples of
a. Discrete random variables
(1) The \# of wins
a team a attain g
awing the regular
bead on of basketball.
(2) The \#of crimes that
will be commit fed in Oceanside ягяяня next year There are various ways co seraph a a prob ability probability po -probability
\qquad histograms
(2) The time (in seconds) that a song that will be played on the radio will be.
(1) The distance (in mites) a person training for a marathon will run before the race.
 instead of _--relative fo---- frequencies sasece on on actual sample events.

1. $\sum P(x)=1$ where x assumes all possible values. The sum of all probabilities must be
\qquad rounding
2. $0 \leq P(x) \leq 1$ for every individual value of x.

IDENTIc IcING aNKUS URL RESULTS WITH THE RANGE RULE OF THUMB

\qquad the value of a

scoritionso of f te mean
\qquad , it is unwoual
\qquad for a value to differ from

$$
\text { Minimum usual value }=M_{--} \cdot \underline{-}
$$

I DEN TI I FIN UNNUS URL RES URIS WITH PRO BABILITIES
x successes a among nt trials is an anus all high numb er of successes if the probability
 less
x successes among nt trials is an unis sally low number of successes it the - probability of \qquad or/ (c mp \qquad is unlikely with a probability of \qquad or less
$\mathcal{R A R E} \mathcal{E V E N T}$ RULE $\mathcal{F O R} I \mathcal{N F E R E N I I \mathcal { A L } \mathcal { S } \mathcal { A } \mathcal { T } I S T I C S}$
If, under a given -assumption
\qquad , the probability of a particular \qquad observed event is extremely small, we conclude that the \qquad assumption is probably not correct

Example 2: Based on information from $\mathcal{M R} \operatorname{IN} \mathcal{N}$ work, some job applicants are required to have several interviews before a decision is made. The number of required interviews and the corresponding probabilities are: 1 (0.09); 2 (0.31); $3(0.37) ; 4$ (0.12); 5 (0.05); 6 (0.05).
a. Does the given information describe a probability distribution?

$$
\begin{aligned}
& \sum P(x) \stackrel{?}{=} 1 \\
& \begin{aligned}
\sum P(x) & =0.09+0.31+0.37+0.12+0.05+0.05 \\
& =0.99 \rightarrow \text { close enough to } 1
\end{aligned}
\end{aligned}
$$

Yes, asouming rounding error.

x	$P(x)$
1	0.09
2	0.31
3	0.37
4	0.12
5	0.05
6	0.05

6. Assuming that a probability distribution is described, find its mean and standard deviation.

$$
\begin{aligned}
& \mu=\sum x \cdot P(x), \mu= 1(0.09)+2(0.31)+3(0.37)+4(0.12) \\
&+5(0.05)+6(0.05) \\
& \mu \approx 2.9 \text { interviews } \\
& \sigma^{2}=\sum x^{2} \cdot P(x)-\mu^{2}, \sigma^{2}= 1^{2}(0.09)+2^{2}(0.31)+3^{2}(0.37)+4^{2}(0.12) \\
&+5^{2}(0.05)+6^{2}(0.05)-2.9^{2} \\
& \sigma^{2}=1.2 \rightarrow \sigma=\sqrt{1.2}=1.1 \text { interviews }
\end{aligned}
$$

x	$P(x)$
1	0.09
2	0.31
3	0.37
4	0.12
5	0.05
6	0.05

c. Use the range rule of thumb to ide entity the range of values for usual numbers of inter vie we.

$$
\begin{aligned}
& M-2 \sigma \leq \text { usual \# of interviews } \leq \mu+2 \sigma \\
& 2.9-2(1.1) \leq \text { usual \# of interviews } \leq 2.9+2(1.1) \\
& 0.7 \leq \text { usual \# of interviews } \leq 5.1
\end{aligned}
$$

d. Is it unusual to have a decision after just one interview. Explain.

No since one interview falls within the range of usual \# of interviews.
definition
The expected value of a discrete \quad - random variable is de noted by $E(X)_{\text {, and it }}$ represents the --- mean value of the outcomes . It is ob taine $6 y$ finding the value of $\Sigma[x \cdot P(x)]$.

$$
E=\Sigma[x \cdot P(x)]
$$

Example 3: There is a 0.9968 probability that a randomly selected 50 -year old female lives through the year (based on data from the U.S. Department of $\mathcal{H e}$ alt and Human Services). A Fidelity life insurance company charges $\$ 226$ for insuring that the female will live through the year. If she does not survive the year, the policy pays out $\$ 50,000$ as a death benefit.
a. From the perspective of the 50-year-old female, what are the values corresponding to the two events of surviving the year and not surviving?
If She lives, she pays ${ }^{\$ 226} \rightarrow-226$
If she dies, the family gets 50000 $\rightarrow 50000-226=49774$

c. Can the insurance company expect to make a profit from many such policies? Why?
yes. The insurance company can expect to make an average of $\$ 66$ per policy of this type per year.
$5.3 \mathcal{B I} \mathcal{N} O \mathcal{M I} \mathcal{A L} \mathcal{P R O \mathcal { B A B } I L I \mathcal { T } \mathcal { Y } \mathcal { D I S } \mathcal { T R } \operatorname { B U I } \text { I O } \mathcal { N } S ~}$
$\mathcal{D E F I} \mathcal{N} I \mathcal{T} I O \mathcal{N}$
\mathcal{A} binomial probability distribution results from a procedure that meets all of the following requirements:

1. The procedure has a \qquad number of trials.
2. The trials must be independent
\qquad $-$.
3. Each trial must ave ail_ out comes
\qquad classified into \qquad commonly referred to as _SUCCeSS _----- and --failure
\qquad
4. The probability of a \qquad remains the S QM in all trials.

S and F (success and failure) denote the two
possible categories of outcomes
$P(S)=p$
$P(F)=1-p=q$
$n \rightarrow$ fixed $\#$ of trials
$x \rightarrow$ specific \# of successes in n trials, $0 \leq x \leq n$
$p \rightarrow$ probability of success in 1 trial
$q \rightarrow$ probability of failure in 1 trial
$P(x) \rightarrow$ probability of exactly x successes among the n trials.

Example 1: A psychology test consists of multiple-choice questions, each having four possible answers (a,
$6, c$, and d), one of which is correct. Assume that you guess the answers to six questions.
a. Use the multiplication rule to find the probability that the first two guesses are wrong and the last four guesses are correct. $P(\omega)=3 / 4, P(C)=1 / 4$

$$
P(\omega \omega C C C C)=\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \approx 0.00220
$$

6. Beginning with WWCCCC, make a complete list of the different possible arrangements of 2 wrong answers and 4 correct answers, then find the probability for each entry in the list. $\omega \operatorname{ccc} \omega$

Prob. of each entry ≈ 0.00220
c. Based on the preceding results, what is the probability of getting exactly 4 correct answers when 6 guesses are made?

$$
P(\text { exactly } 4 \text { Gout of } 6)=15(0.0220) \approx 0.0330
$$

d. Now use the Binomial Probability Formula to find probability of getting exactly 4 correct answers when 6 guesses are made.

$$
x=4 \quad q=\frac{3}{4}
$$

$\mathcal{B I} \mathcal{N} O \mathcal{M} I \mathcal{A L} \mathcal{P R} O \mathcal{B A B I} \mathcal{A} \mathcal{T} \mathcal{Y} \mathcal{F} O \mathcal{R} \mathcal{M C I L A}$

$$
P(x)=\frac{n!}{(n-x)!x!} \cdot p^{x} \cdot q^{n-x} \quad \text { for } x=0,1,2, \ldots, n \quad C_{n} p^{x} q^{n-x}
$$

Example 2: Assuming the probability of a pea having a green pod is 0.75 , use the binomial probability formula to find the probability of getting exactly 2 peas with green pods when 5 offspring peas are generated.

