Example 2: In a study of 420,095 cell phone users in Denmark, it was found that 135 developed cancer of the brain or nervous system. If we assume that the use of cell phones has no effect on developing such cancer, then the probability of a person having such a cancer is 0.000340 .
a. Assuming that cell phones have no effect on developing cancer, find the mean and standard deviation for the numbers of people in groups of 420,095 that can be expected to fave cancer of the brain or nervous system.

$$
n=420095 \quad q=0.99966
$$

$$
p=0.000340
$$

$q=1-p$ cases of cancer of the brain or nervous system? Why or why not?

$$
\begin{aligned}
& \sigma=\sqrt{n p q} \sigma \approx 11.9 \text { people } \\
& \sigma=\sqrt{(120095)(0.000340)(0.99966)}
\end{aligned} \left\lvert\, \begin{aligned}
& \mu-2 \sigma<\text { usual \# who develpthiscancer<u+2r } \\
& \mid 19.0<\text { usual who develop this cancer }<1666 \\
& \text { No. } 135 \text { falls within the usual number }
\end{aligned}\right.
$$

c. What do these results suggest about the publicized concern that celt phones are a health danger because they increase the risk of cancer of the brain or nervous system?
The publicized concern is not supported by the statistical results.

$\mathcal{U N}$ FORM $\operatorname{DIS} \mathcal{T R I B U T}$ IO $\mathcal{N S}$
The uniformm_distribution allows us to see two very important properties:

1. The area under the graph of a probability distribution is equal .o. 1
2. There is a - Correspondence between --area -and probability --- or relative --frequency), so some
 - area \qquad

$A=1$ and $A=$ base -height

$$
\text { So } 1=(b-a) \cdot h
$$

Example 1: The Newport Power and Light Company provides electricity with voltage levels that are uniformly distributed between 123.0 volts and 125.0 volts. That is, any voltage amount between 123.0 volts and 125.0 volts is possible, and all of the possibilities are equally likely. If we randomly select one of the voltage levels and represent its value by the random variable x, then x hiss a distribution that can be graphed.
a. Sketch a graph of the uniform distribution of voltage levels.

$$
b-a=125-123=2
$$

 and $A=1$

$$
\begin{aligned}
& \text { and } A=1 \\
& 1=(b-a) \cdot h \\
& 1=2 \cdot h
\end{aligned} \longrightarrow \text { so } h=0.5
$$

6. Find the probability that the voltage level is greater than 124.0 volts.

$$
\begin{aligned}
& P(x>124.0)=\frac{1}{2} \\
& A=(125-124) \cdot \frac{1}{2} \\
& A=1 \cdot \frac{1}{2} \rightarrow A=\frac{1}{2}
\end{aligned}
$$

c. Find the probability that the voltage level is less than 123.5 volts.

$$
\begin{aligned}
& A=(123.5-123) \cdot \frac{1}{2} \\
& A=0.25 \\
& \hline P(X<123.5)=0.25
\end{aligned}
$$

d. Find the probability that the voltage level is between 123.2 volts and 124.7 volts.

e. Find the probability that the voltage level is between 124.1 volts and 124.5 volts

$$
A=(124.7-123.2) \cdot \frac{1}{2}
$$

$$
A=1.5 \cdot \frac{1}{2} \quad P(123.2<x<124.7)=0.75
$$

$$
A=0.75
$$

$$
\begin{aligned}
& A=(124.5-124.1)\left(\frac{1}{2}\right) \\
& A=0.4 \cdot \frac{1}{2} \quad P(124.1<x<124.5)=0.2 \\
& A=0.2
\end{aligned}
$$

The graph of a probability distribution, such as part (a) in the previous example is called a
-- density \qquad curve \mathcal{A} density curve must satisfy the following two

1. The total \qquad area under the - Curve \qquad must equal 1
2. Every point on the curve must t ave aver tical height that is
\qquad 0 or --greater
$\mathcal{D E F I N I T I O N}$
The standard normal distribution is a normal distribution - with $\mu=0 \quad-\quad$ and $\sigma=1$ area under is - density curve is squat to --- 1 \qquad

STATISTICS GUIDED NOTEBOOK/FOR USE WITH M ARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

 regions \qquad . Such are as can also be found using a \qquad - calculator \qquad . When using \mathcal{T} able $\mathcal{A}-2$, it is essential to understand these points:
 \qquad normal distribution, which Gas a mean of $\mathcal{M}=0$ - and a standard deviation of $\sigma=1$.
2. Table a-2 is on - Z pages, witt one page for negative --- SCores and the other page for positive Z Scores.
3. Each value in the body of the table is a Cumulative_arear from the Left - uroonvertical boundary_ atom opereffic z score
4. When working with a graph arenas \qquad
cure Distance woos wee horizontal
\qquad Table $\mathcal{A}-2$.
area: Region
 under the \qquad ; refer to the values in the body of Table $\mathcal{A}-2$.
5. The part of the _Z SCore_ denoting \qquad hundredths is found across the top_-row_-_ of Table A-2.

NEGATIVE z Scores

$P(z>-3(z<-3.02)=0.0013$
Table A-2 \quad Standard Normal (z) Distribution: Cumulative Area from the LEFT $=0.9987$

POSITIVE z Scores

Table A-2 (continued) Cumulative Area from the LEFT

$\mathcal{N O T \mathcal { A } I O \mathcal { N }}$

$$
P(a<z<b)
$$

$P(z>a) \quad 2$ ways to find this...

$$
\begin{gathered}
P(z>a)=1-P(z<a) \\
P(z>a)=P(z<-a) \\
P(z<a)
\end{gathered}
$$

$a \mid b$

Example 2: Assume that thermometer readings are normally distributed with a mean of $0^{\circ} \mathrm{C}$ and a standard deviation of $1.00^{\circ} \mathrm{C}$. A thermometer is randomly selected and tested. In each case, draw a sketch and find the probability of each reading. The given values are in Celsius degrees.
a. Less than -2.75
6. Greater than 2.33

