Example 2: In a study of 420,095 cell phone users in Denmark, it was found that 135 developed cancer of the brain or nervous system. If we assume that the use of cell phones has no effect on developing such cancer, then the probability of a person having such a cancer is 0.000340.

a. Assuming that cell phones have no effect on developing cancer, find the mean and standard deviation for the numbers of people in groups of 420,095 that can be expected to have cancer of the brain or nervous system.

 $\int q = 0.99966$ $M = np \rightarrow M = (420095)(0.000340) \approx 142$ Peop n = 420095= 0.000340 Based on the results from part (a), is it unusual to find that among 420,095 people, there are cases of cancer of the brain or nervous system? Why or why not? because they increase the risk of cancer of the brain or nervous system? The publicized concern is not supported by the statistical recults. 6.2 THE STANDARD NORMAL DI STRI BUTI ON UNIFORM DISTRIBUTIONS distribution allows us to see two very important The mitor m____ properties: 1. The <u>area</u> under the <u>graph</u> of a <u>probability</u> distribution is equal 2. There is a <u>Correspondence</u> between <u>area</u> and <u>probability</u> (or <u>relative</u> frequency), so some probabilities _____ can be found by identifying the corresponding area

DEFINITION

random varable has a uniform distribution A <u>Continuous</u> if its values are spread <u>even</u> over the <u>range</u> of ____. The graph of a uniform distribution results in a rectangu lar shape.

A=1 and A=base-height So $1=(b-a)\cdot h$

Example 1: The Newport Power and Light Company provides electricity with voltage levels that are uniformly distributed between 123.0 volts and 125.0 volts. That is, any voltage amount between 123.0 volts and 125.0 volts is possible, and all of the possibilities are equally likely. If we randomly select one of the voltage levels and represent its value by the random variable x, then x has a distribution that can be graphed.

Sketch a graph of the uniform distribution of voltage levels.

79

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

DEFINITION

The standard normal distrib	ution is a <u>Normal</u>		probability
distribution	with	and =	The total
under its	density	Curve	is equal to

$f(X) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} \qquad \qquad \mu = 0$ $\sigma = 1$ $f(X) = \frac{1}{\sigma \sqrt{2\pi}} e^{-x^2/2}$ $f(X) = \frac{1}{\sigma \sqrt{2\pi}} e^{-x^2/2}$
FINDING PROBABILITIES WHEN GIVEN Z SCORES
Using table <u>A2</u> , we can find <u>ACCAS</u> or <u>probabilities</u> for many different
<u>regions</u> . Such areas can also be found using a <u>graphing</u> . <u>calculator</u> . When using Table A-2, it is essential to understand these points:
1. Table A-2 is designed only for the <u>Standard</u> <u>Normal</u> distribution, which
has a mean of $\underline{M^{=}}$ and a standard deviation of $\underline{\int = 1}$.
2. Table A-2 is on 2 pages, with one page for 2 and the and the
other page for <u>positive</u> ZSCARES.
3. Each value in the body of the table is a <u>cumulative</u> area from the
left up to a vertical boundary above a specific
ZSCORE
4. When working with a graph, avoid confusion between $\frac{25000}{1000}$ and α
z score: Distance along the horizontal scale of the standard
normal distribution; refer to the <u>left-most</u> column and <u>top</u> row of
Table A-2.

STATISTICS GUIDED NOTEBOOK/FOR USE WITH MARIO TRIOLA'S TEXTBOOK ESSENTIALS OF STATISTICS, 3RD ED.

Ą	Area:	Regio	h_{-}	unde	er the _	Ċw	Ve		_; refe	r to the	e values	s in the	
_	body	<u> </u>	of ⁻	Table A-	2.								
5 T	∙ The part	ofthe	750	ne	denot	ina	hund	dredt	hs	is fo	ind acr	ross the	
0. 1	no pur c					<u>9</u>				13 10		000 110	
_	top faw of Table A-2.												
		/				NE	GA	TIN	/E .	z S	col	res	i.
	$P(z, z^{-3}, 02) = 0.0013$												
R(Z > -3.02) = 1 - P(Z - 3.02)										$ \setminus $			
	TABLE /	A-2 Sta	ndard No	rmal (z) D	istribution	n: Cumulat	tive Area	from the	LEFT	0.99	87		<u> </u>
	z	.00	.01	.02	.03	.04	.05	5 .	06	.07	.08	-3,00	
	-3.50 and	2											3
	lower	.0001	0003	0003	0003	0003	00	13 0	003	0003	0003	0002	
	-3.3	.0005	.0005	.0005	.0003	.0003	.000	15 .0 14 .0	003	0003	.0003	.0002	
	-3.2	.0007	.0007	.0006	.0006	.0006	.000	06 .0	006	0005	.0005	.0005	€
	-3.1	.0010	.0009	,0009	.0009	.0008	.000	0. 80	. 800	0008	.0007	.0007	3
	-3.0	.0013	.0013	.0013	.0012	.0012	.001	.0	011 .	0011	.0010	.0010	5
	-2.9	.0019	.0018	.0018	.0017	.0016	.001	16 .0 22 . 0	015	0015	.0014	.0014	
in the second	A CONTRACTOR	20			- the state of the second	An a surface of the second						A CARA CONTRACTOR	
	_		\square			PO	SIT	IVE	Z	Sco	re		
1	TABLE A	-2 (con	0 z	umulative A	rea from t	he LEFT						ł	
	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	2	
	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.535	0.00	
	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.575	3	
	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.61	2.	
	0.5	.6179	.6217	.6233	.0293	.0331	.0.908	6772	6808	.0480	.651	G	
	0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.722	4.1	
	0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.754	2	
	0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.785	2.	
	0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813	2	
	0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838		
	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8334	.8790	.6399	.802	0	
	1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901	5	
	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.91	r	
many	1.4	.9192	.9207	2222	.9236	.9251	.9265	.9279	.9292	.9306	.93		
1		-1	1.134	25	0.100	0.1		- Avera	a contract of	and the second			

NOTATION

Example 2: Assume that thermometer readings are normally distributed with a mean of 0°C and a standard deviation of 1.00 °C. A thermometer is randomly selected and tested. In each case, draw a sketch and find the probability of each reading. The given values are in Celsius degrees.

a. Less than -2.75

b. Greater than 2.33