CHEBYS HEV'S $\mathcal{H H E O R E M}$
The _--_Proportion of the mean is strays _at least - - - ------ $1-\frac{1}{K^{2}}, K \geq 1$. For $x=2$ or $x=3$, we get the following statements:
$\pi \mathcal{A}$ least $3 / 4$ or 75% of all values lie within 2 standard deviations of the mean.
$\pi \mathcal{A}$ least $8 / 9$ or 89% of all values lie within 3 standard deviations of the mean.
 When comparing -_Variation 2 in ------- different sets of data the _ Standard_-_ deviations should be compared only if the two sets of data use the same --units and scale \qquad and they have approximately the same mean \qquad .
$\mathcal{D E F I} \mathcal{N} I \mathcal{T} I O \mathcal{N}$

The coefficient of variation (aka CV) for a set of nonnegative sample or population data, expressed as a percent, describes the standard deviation \qquad relative to the - mean \qquad , and is given by the following: sample: $C V=\frac{S}{\bar{x}} \cdot 100 \%$ Population: $C V=\frac{\sigma}{\mu} \cdot 100 \%$

Example 3: Find the coefficient of variation for each of the two sets of data, thencompare the variation.

The trend of thinner $\mathcal{M i s s} \mathcal{A m e r i c a}$ winners fas generated charges that the contest encourages untrealthy diet habits among young women. Listed below are body mass indexes (BMI) for Miss America winnersfrom two different time periods.
$\mathcal{B M I}(f r o m$ the $1920 s$ and $1930 s): 20.421 .922 .122 .320 .318 .818 .919 .418 .419 .1$

$\mathcal{D E F I} \mathcal{N} I \mathcal{T} I O \mathcal{N}$
The z score (aka standard value) is the number of _-o- Standaron value x is above or below the _-_- Mean The z score is calculated by using one of the following:

$$
\text { Sample: } \quad z=\frac{x-\bar{x}}{s} \quad \text { Population: } \quad z=\frac{x-\mu}{\sigma}
$$

ROUND DI FF RULE FOR ZS CORES
Round z scores to \square decimal places. This rule is due to the fact that the standard table of z scores (Table $\mathcal{A}-2$ in Appendix \mathcal{A}) has z scores with two decimal places.

Z SCORES, UNIS UL VALUES, AND OUTLIERS
In Section 3.3 we used the \qquad range
rule ----- of - thumb
to conclude that a value is \qquad unusual mean . It follows that unusual values have z scores less than \qquad -2 or the \qquad greater than \qquad -

Example 1: The U.S. Army requires women's heights to be between 58 inches and 80 inches. Women have heights with a mean of 63.6 inches and a standard deviation of 2.5 inches. Find the z score corresponding to the minimum height requirement and find the z score corresponding to the maximum height requirement. Determine whether the minimum and maximum heights are unusual.
minimum height requirement

$$
\begin{aligned}
& z=\frac{58-63.6}{2.5} \\
& z \approx-2.24
\end{aligned}
$$

$\mathcal{D E F I N} \mathcal{N} I \mathcal{T I O \mathcal { N }}$

$$
z=\frac{80-63.6}{2.5} \text { wove }
$$

Percentiles are measures of \qquad , Actorocta $P_{1}, P_{2}, P_{32} \ldots, P_{99}$
\qquad which divide a set of data into \qquad 180 groups with about \qquad of the values in each group. The process of finding the percentile that corresponds to a particular data value x is given by the following:

$$
\text { \# of values less than x. } 100
$$

total \# of values
$\mathfrak{N O T A T I O N}$
n total \# of values in a sample
k percentile being used $L=\frac{K}{100} \cdot n$
a locator that gives us the position of a value
L. If L is a whole number, use the position found and the next one up and then average the 2 numbers
$P_{k} \cdot$ If L is a decimal, round up and use the \# in that position.
Kth percentile

Example 2: Use the given sorted values, which are the number of points scored in the Super Bowlfor a recent period of 24 years.

363737393941434444475053545556565759616165696975
a. Find the percentile corresponding to the given number of points.
ii. 41 Percentile of $41=\frac{5}{24} \cdot 100=21 \rightarrow P_{21}=41$
6. Find the indicated percentile or quartile.
i. $Q_{1}=P_{25} \rightarrow L=\frac{25}{100} \cdot 24 \rightarrow L=6$, so we average the scores
ii. $P_{80} \rightarrow L=\frac{80}{100} \cdot 24 \rightarrow L \approx 19.2$ in positions 6 and 7
iii. $P_{P_{55} \rightarrow L=\frac{95}{102} \cdot 24} \quad \begin{aligned} & \frac{41+43}{2}=42 \\ & Q_{1}=42\end{aligned}$
$L=22.8 \rightarrow L=23 \rightarrow P_{a s}=69$

Quartiles are measures of location \qquad denoted $Q_{L_{2}} Q_{2} Q_{3} Q_{3}$ which divide a set of data into _-_-_-_-_ \qquad groups with about 25% of the values in each group.
$\mathcal{F I R S T}$ QUART I IE E:
separated the bottom 25% firm the top 75% $\mathcal{S E C O N D}$ QUARTILE:
separated the bottom 50\% from the top 50% $\mathcal{T H I R D} Q \mathcal{U A R I} I L \mathcal{E}:$
Separates the bottom 75% from the top 25% definition
 first quartile --- the median rata second --quartile ----- third - - quartile ------ and tho maximum value.
\mathcal{A} Goxplot (aka box-and-whisker diagram) is a graph of a data set that consists of a line ------- extending from the --- minimum maximum _--- value, and a box -------- with fines drawn at the first ----------- mandible the the Third quartile
 modified boxplot
out lien it is...
above quartile 3 by an amount greater than $1.5 x$ inner quartile range or below quartile 1 by an amount greater than $1.5 \times$ inner quartile range
are called \qquad or
\qquad Goxplots, which represent \qquad
special points. A modified boxplot is a boxplot constructed with these modifications: (1) \mathfrak{A} special symbol, such as an \qquad or point is used to identify \qquad
and (2) the solid horizontal line extends only as far as the minimum and maximum values which are not outliers.

Example 3: Use the given sorted values, which are the number of points scored in the Super Bowlfor a recent period of 24 years to construct a boxplot. Are there any outliers?

363737393941434444475053545556565759616165696975

Outlier check:

