3.2 MEAS URES OF CENTIER
\mathcal{A} measure of center is a value at the \qquad center or _ middle of a data set.
$\mathcal{D E F I N} \operatorname{NTION}$

The arithmetic mean (aka mean) of a set of data is the \qquad measure \qquad of Confer and \qquad dividing the total by the ---- number \qquad of data values.

$$
\text { mean }=\frac{\sum x}{n}=\frac{\text { Sum of all data values }}{\text { number of data values }}
$$

**One advantage of the mean is that it is relatively _-_ Reliable \qquad , so that when samples are selected from the same population, sample means tend to be more_Conslstent_-_ than other measures of center. Another advantage of the mean is that it takes every__data_ value into account. However, because the mean is \qquad sensitive to every value, just one
extreme \qquad value can affect it dramatically
------- measure of center.
-resistant \qquad
$\mathfrak{N O T A T I O N}$
\sum : sum
x: variable used to represent
individual data values
n : number of data values in a sample
$\bar{x}=\frac{\sum x}{n}$: mean of a set of sample values

$\tilde{x}:$ median, $N: \begin{aligned} & \text { number of data } \\ & \text { values in a }\end{aligned}$ population

Example 1: Find the mean of the following numbers:

$$
\begin{aligned}
& \bar{x}=\frac{\sum x}{n} \\
& \bar{x}=\frac{17+23+17+22+21+34+27}{7} \\
& \bar{x}=\frac{161}{7}=23
\end{aligned}
$$

$\mathcal{D E F I N} \operatorname{NTIO} \mathfrak{N}$

The median of a data set is the measure of center that is the \qquad value when the original data values are arranged in \qquad order \qquad of increasing (or decreasing) magnitude. The median is often denoted \qquad (pronounced " x-tilde"). To find the median, first__SOrt
\qquad the values, then follow one of these two procedures:

1. If the number of data values is \qquad odd , the median is the number located in the exact ----_middle of the list.
2. If the number of data values is \qquad even the median is the \qquad average of the \qquad middle two numbers.

* The me dian is a _-_ resistant
\qquad measure of center, because it does not change by _-- targe \qquad amounts due to the presence of just a few \qquad extreme values.

Example 2:
a. Find the median of the following numbers:

$$
1717212217222132723
$$

6. Find the median of the following numbers

$$
\tilde{x}=\frac{22+23}{2}=22.5
$$

172317223427
34
$\mathcal{D E F I N} \mathcal{N} I \mathcal{T} I O \mathcal{N}$
The mode of a data set is the value that occurs with the greatest
 \mathcal{A} data set can fave more than one mode, or no mode.
π When two data values occur with the same greatest frequency, each one is a \qquad and the data set is \qquad bimodal
π When more than two data values occur with the same greatest frequency, each is a -- Mode ------ and the data set is said to 6 e \qquad multi
π When no data value is repeated, we say there is no mode **The mode is the only measure of center that can be used with data at the \qquad level of me asurement.

Example 3:
a. Find the mode of the following numbers:

17231722213427
mode is 17
6. Find the mode of the following numbers

1723172221342722
data set is bimodal \rightarrow the modes are 17 and 22

The midrange of a data set is the measure of center that is the value \qquad midway between the \qquad minimum \qquad and \qquad maximum \qquad values in the original data set. It is found by adding the maximum data value to the minimum data value and then dividing the sum by two.

$$
\text { midrange }=\frac{\text { min. data value }+ \text { max. data value }}{2}
$$

${ }^{* *}$ The midrange is rarely used because it is too
only the minimum and maximum data values.
Example 4: Find the midrange of the following numbers:
17231722213427 minimum: 17 , maximum: 34
$\mathcal{R O} \mathcal{U} \mathcal{N} \mathcal{D}-O \mathcal{F F}$ RULE $\mathcal{F} O \mathcal{R} \mathcal{T H E} \mathcal{M E A N}, \mathcal{M E D I} \mathcal{A N}, \mathcal{A N \mathcal { D }} \mathfrak{M I D R \mathcal { A N G E }}$
Carry _-OQ more decimal place than is present in the original data set. Because values of the mode are the same as some of the original data values, they can be left without any rounding.
$\mathscr{M E A \mathcal { A }} \mathcal{F R O M} \mathcal{A} \mathcal{F R E Q} \mathcal{U E N} \mathcal{N}$ DIS TRIBUCION
When working with data summarized in a frequency distribution, we don't know the \square values falling in a particular _or en. To make calculations
\qquad sensitive to extremes since it uses

$$
\text { midrange }=\frac{17+34}{2}=25.5
$$ exact that all sample values in each class are equal to the class \qquad We can then add the -- products \qquad from each \qquad to find the total of all sample values, which we can then \qquad divide

Example 5: Find the mean of the data summarized in the given frequency distribution.
Tar (mg) in nonfiltered cigarettes Frequency

WEIGHTED $\mathfrak{M E A N}$
When data values are assigned different weights, we can compute a weighted mean.

$$
\bar{x}=\frac{\sum(w \cdot x)}{\sum w}
$$

Example 6: A student earned grades of $92,83,77,84$, and 82 on fer regular tests. She earned grades of 88 on the final and 95 on her class project. Her combined homework grade was 77 . The five regular tests count for 60% of the final grade, the final exam counts for 10%, the project counts for 15%, and homework counts for 15%. What is her weighted mean grade? What letter grade did she earn?
Average exam score is: $\frac{92+83+77+84+82}{5}=83.6$

x	ω	$x \cdot \omega$	
83.6	0.60	50.16	$\bar{x}=\frac{\sum x \cdot \omega}{\sum \omega}$
88	0.10	8.8	
95	0.15	14.25	$\bar{x}=\frac{84.76}{1.00}$
77	0.15	11.55	$\bar{x}=84.8$

$$
\bar{x}=\frac{84.76}{1.00}
$$

Her weighted mean grade is approximately 84.8%.
She earned a B in the class.

$$
\bar{x} \doteq 84.8
$$

\mathcal{S} KEW $\mathcal{N} \mathcal{E}$ SS

\qquad

``` and
```

mode \qquad can reveal information about the characteristic of skewness. \mathcal{A} distribution
of data is said to be
 if it is not \qquad - \qquad and
extends more to one side than the other.

A Comparison of the Mean, Median, and Mode

The mean, median, and mode are affected by what is called skewness (ie., lack of symmetry) in the data.

- Here is Figure 15.6 , which showed a normal curve, a negatively skewed curve, and a positively skewed curve:

- Look at the above figure and note that when a variable is normally distributed, the mean, median, and mode are the same number.
- When the variable is skewed to the left (ie., negatively skewed), the mean shifts to the left the most, the median shifts to the left the second most, and the mode the least affected by the presence of skew in the data.
- Therefore, when the data are negatively skewed, this happens: mean < median < mode.
- When the variable is skewed to the right (ie., positively skewed), the mean is shifted to the right the most, the median is shifted to the right the second most, and the mode the least affected.
- Therefore, when the data are positively skewed, this happens: mean > median > mode.
- If you go to the end of the curve, to where it is pulled out the most, you will see that the order goes mean, median, and mode as you "walk up the curve" for negatively and positively skewed curves.

3.3 MEAS URES Of VARIATION

$\mathcal{D E F I N} I \mathcal{T} I O \mathcal{N}$

The range of a set of data values is the
 Getweenthe maximum and the - minimum \qquad data value.

The standard deviation of a set of sample values, denoted by S, is a measure of _- Variation of values about the \qquad . It is a type of \qquad deviation of values from the mean that is calculated by using either of the following formulas:

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}
$$

or

$$
s=\sqrt{\frac{n \sum(x)^{2}-\left(\sum x\right)^{2}}{n(n-1)}}
$$

π The standard deviation is a measure of \qquad of all values from the _mean \qquad .
π The value of the standard deviation is usually _-POSITIVe

- It is zero only when all of the data values
π Larger values of the standard de viation indic ate \square amounts of variation
π The value of the standard deviation can increase dramatically with the inclusion of one or more outliers
\qquad .
π The units of the standard deviation are the same units as the original \qquad data values.

General Procedure for Finding Standard
Deviation ($1^{\text {st }}$ formula)

Specific Example $\mathcal{C l s i n g}$ the Following $\mathcal{N} u m b e r s$:
$2,4,5,16$

Step 1: Compute the mean \bar{x}

$$
\bar{x}=6.75
$$

Step 2: Subtract the mean from each individual sample value

$$
\begin{aligned}
& 2-6.75=-4.75 \rightarrow x_{1}-\bar{x} \\
& 4-6.75=-2.75 \rightarrow x_{2}-\bar{x} \\
& 5-6.75=-1.75 \rightarrow x_{3}-\bar{x} \\
& 16-6.75=9.25 \rightarrow x_{4}-\bar{x}
\end{aligned}
$$

Step 3: Square each of the deviations obtained from Step 2.

$$
\begin{aligned}
& (-4.75)^{2}=22.56 \rightarrow\left(x_{1}-\bar{x}\right)^{2} \\
& (-2.75)^{2}=7.56 \rightarrow\left(x_{2}-\bar{x}\right)^{2} \\
& (-1.75)^{2}=3.06 \rightarrow\left(x_{3}-又\right)^{2} \\
& (9.25)^{2}=85.56\left(x_{4}-\bar{x}\right)^{2}
\end{aligned}
$$

Step 4: Add all of the squares obtained from Step
3.

$$
\sum(x-\bar{x})^{2}=118.74
$$

$$
\frac{\sum(x-\bar{x})}{n-1}=\frac{118.74}{4-1}=39.58
$$

Step 6: Find the square root of the result from Step 5. The result is the standard deviation.

$$
S=\sqrt{\frac{2(x-\bar{x})^{2}}{n-1}}
$$

$s \approx 6.3$

The definition of standard deviation and the previous formulas apply to the standard deviation of ---population data. A slightly different formula is used to calculate the standard deviation σ of a _---- population_---------: instead of dividiting by $n-1$, we divide by the population size N.

$$
\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}}
$$

$\mathcal{D E F} \mathcal{N} I \mathcal{T} I O \mathcal{N}$
The variance (aka dispersion aka spread) of a set of values is a measure of _ variation_-_-_ equal to the \qquad of the \qquad Standard -- deviation

Sample variance: S^{2}
Population variance: σ^{2}
${ }^{* *}$ The sample variance is an unbiased estimator of the \ldots Ovulation variance, which means that values of S^{2} tend to target the value σ^{2} of instead of systematically tending to
overestimate \qquad or underestimate σ^{2}.
$\mathcal{U} S I \mathcal{N} G \mathcal{A N D} \mathcal{U} \mathcal{N} \mathcal{D E R S} \mathcal{T A N} \mathcal{D} I \mathcal{N} G S \mathcal{T A} \mathcal{N} \mathcal{D A R D} \mathcal{D E V I A T I O \mathcal { N }}$
O ne simple tool for understanding standard deviation is the \qquad of \qquad , which is based on the principle that for many data sets, the vast majority (such as 95%) (ie within \qquad mean .

RANG GE RULE OF THUMB
Interpreting a known value of the standard deviation: We informally defined \square Heal values in a data set to be those that are typical and not too \qquad extreme \qquad . If the standard deviation of a collection of data is \qquad known , use it to find rough estimates usual of the \qquad minimum and \qquad maximum _ values as follows:
minimum"usual" value $=($ mean $)-2 \chi($ standard deviation $)$
maximum"usual" value $=($ mean $)+2$ x (standard deviation $)$

Estimating a value of the standard deviation s: To roughly estimate the standard deviation from a collection of \square sample data, use

$$
s \approx \frac{\text { range }}{4}
$$

Example 1: Use the range rule of thumb to estimate the ages of all instructors at MiraCosta if the ages of instructors are between 24 and 60.

Another concept that is helpful in interpreting the value of a standard deviation is the empirical \qquad
 \qquad that is approximately__
π About 68% of all values fall within 1 standard deviation of the mean
$\pi \mathcal{A b o u t ~} 95 \%$ of all values fall within 2 standard deviations of the mean
π About 99.7% of all values fall within 3 standard deviations of the mean

Example 2: The author's Generic generator produces voltage amounts with a mean of 125.0 volts and a standard deviation of 0.3 volt, and the voltages have a bell-shaped distribution. Use the empiric alto find the approximate percentage of voltage amounts between
a. 124.4 volts and 125.6 volts
124.4 is $2 \cdot 0.3$ volts below the mean bellow $\bar{x}=125$ and 125.6 is $2 \cdot 0.3$ volts above the mean $\mathbb{K} 25 . d$ above
6. 124.1 volts and 125.9 volts
$\longrightarrow 3$ s.A. below \longrightarrow 3s.d. above

$$
99.7 \%
$$

