6. Find the probability of selecting a subject with a negative test result, given that the subject lied.

$$
P(-\mid L)=\frac{9}{51}
$$

$$
\begin{aligned}
P(-I L)=\frac{P(L \text { and }-)}{P(L)} & =\frac{9 / 98}{51 / 98} \\
& =9 \\
& =9
\end{aligned}
$$

c. $\mathscr{F}_{\text {ind }} P($ negative test result $\mid$ subject did not lie $)$.

$$
P(-\mid \bar{L})=\frac{32}{47}
$$

d. $\mathscr{F}_{\text {ind }} P($ subject did not lie $\mid$ negative test result $)$.

e. Are the results from (c) and (d) equal?
HECK NO!!!

Example 4: The Orange County $\mathcal{D e}$ apartment of $\mathcal{P u}$ bic $\mathcal{H e}$ alt tests water for contamination due to the presence of $\mathcal{E}$. coli bacteria. To reduce the laboratory costs, water samples from six public swimming areas are combined for one test, and further testing is done only if the combined sample fails. Based on past results, there is a $2 \%$ chance of finding $\mathcal{E}$. coli bacteria in a public swimming area. Find the probability that a combined sample from six public swimming areas will reveal the presence of $\mathcal{E}$. coli bacteria.

$$
\begin{aligned}
P(\text { sample fails }) & =P(\text { at least } 1 \text { fails }) \\
& =1-P(\text { none fail }) \\
& =1-(0.98)^{6} \\
& \approx 0.114
\end{aligned}
$$

$4.6 \operatorname{COUNIING}$
$\mathcal{F U N} \mathcal{D A M E N} \mathcal{N} \mathcal{A} L \mathcal{C O} \mathcal{N T I N G}$ RULE
for a - Sequence of to - events in which the first event can occur _-_ _-_ ways and the second event can occur $\qquad$ m ways, the events together can occur a total of $n \cdot m$ ways.

Example 1: How many different Californiaveficle license plates (not specialized plates) are possible if the first, fifth, sixth, and seventh digits consist of a number from 1-9, and the second, third, and fourth digits have letters?
9.26 .26 .26 .9 .9 .9

$$
115,316,136
$$

Notation $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$

The factorial symbol(!) denotes the product of decreasing positive whole numbers.

Example 2: Evaluate 5!
a collection of _n_ different items can be arranged
$\qquad$ in order $\qquad$ different ways.

Example 3: Find the number of ways that 8 people can be seated at a round table.


$$
(8-1)!=7!
$$


$\mathcal{P E R M U I} \mathcal{A T I O N} \mathcal{N} S \mathcal{R L L E}(\mathcal{W H E N} I \mathcal{T E M S} \mathcal{A R E} \mathcal{A L L} \mathcal{D I} \mathcal{F F E R E N T})$

Requirements:

1. There are $\qquad$ different item ms available.
2. We select $\qquad$ of the $\qquad$ items (without replacement).
3. We consider__rarrangement_-_- of the same items to be $\qquad$ sequences. This would mean that $\mathfrak{A B C}$ is different from $\mathcal{C B A}$ and is counted separately. If the preceding requirements are satisfied, the number of $\qquad$
 (without replacement) is

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

Example 4: A political strategist must visit state capitols, but she has time to visit only three of them. Find the number of different possible routes.

$$
\begin{aligned}
& n=50 \\
& r=3
\end{aligned}
$$




Requirements:

1. There are $\qquad$
 identical to others.

2. We consider -fearfangements
sequences. $\qquad$ different If the preceding requirements are satisfied, and if there are $\qquad$ n alice, $n_{2}$ $\qquad$ alike, ..,
$\qquad$ $n_{k}$ alike, the number of $\qquad$ or $\qquad$ of all items selected without replacement is


Example 5: In a preliminary test of the MicroSort gender-selectionmethod, 14 babies were born and 13 of them were girls.
a. Find the number of different possible sequences of genders that are possible when 14 babies are born.

$$
\begin{aligned}
& 2 \leq 2 \leq 222222222 \\
& 2^{14}=16,384
\end{aligned}
$$

6. How many ways can 13 girls and 1 boy be arranged in a sequence?

$$
\begin{aligned}
& n=14 \\
& n_{1}=13 \\
& n_{2}=1
\end{aligned}
$$


c. If 14 babies are randomly selected, what is the probability that they consist of 13 girls and 1
boy?

$$
\begin{aligned}
P(B G, I B) & =\frac{\# \text { of ways to get } 13 \text { girls and } 1 \text { Boy }}{\text { total \# of ways to ged } 14 \text { babies }} \\
& =\frac{14}{16384} \rightarrow \approx 0.000854
\end{aligned}
$$

d. Does the gender-selection method appear to yield a result that is significantly different from a result that might be expected from random chance?
yes. $P(B G, I B)$ is very small. We would expect to se half boys and half girt so this method seams to work.
$\operatorname{COMBINATIONS~RULE~}$
Requirements:

1. There are $n$---- different ------items available.
2. We select _- $r$--- of the $n$ items suitfoust replace me nt).

 items selected from _ _ n

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Example 6: Find the number of different possible five-card poker hands.

$$
\begin{aligned}
& n=52 \\
& r=5
\end{aligned}
$$

$$
{ }_{52} C_{5}=\frac{52!}{(52-5)!\cdot 5!}
$$

$$
=2,598,960
$$

Example 7: The Mega Millions lottery is run in 12 states. Winning the jackpot requires that you select the correct five numbers between 1 and 56, and, in a separate drawing, you must also select the correct single number between 1 and 46. Find the probability of winning the jackpot.
Let $w_{1}$ denote winning the $1^{\text {st }}$ drawing
Let $\omega_{2}$ denote winning the $z^{\text {nd }}$ drawing

$$
\begin{aligned}
& P\left(\omega_{\text {inning }}\right)=P\left(\omega_{1}\right) \cdot P\left(\omega_{2}\right) \\
& =\frac{1}{5 C_{5}} \cdot \frac{1}{46} \\
& =\frac{1}{3819816} \cdot \frac{1}{46}
\end{aligned}
$$

