Example 4: Use the frequency distribution from example 3 to construct a histogram.

Amount of Strontium-90 (in millibecquerels)
2.4 STATISTICAL GRAPHICS

Key Concept...
In this section we discuss types of statistical graphs other than \qquad suitable
\qquad graph for representing a---- data \qquad set.
$\mathcal{F R E Q}$ JENNY PO LYON
\mathcal{A} frequency polygon uses line segments connected to points directly above class
midpoint values.
\mathcal{A} relative frequency polygon uses relative frequencies for the \qquad scale.

OGIVE
An ogive (pronounced "of-jive") involves _- (emulative frequencies. Ogives are
useful for determining the number of values below some particular value. An ogive is a
line \qquad graph that depicts cumulative frequencies. An ogive uses class boundaries along the horizontal scale, and _(WMulative_____-_frequencies along the vertical scale.

For example, if you saved $\$ 300$ in both $\operatorname{ganuary}$ and April and $\$ 100$ in each of $\mathcal{F e}$ bruary, March, May, and I one, an ogive would look like Figure 1.

Total Accumulated Savings

Figure 1 Ogive of accumulated savings for one year.
$\mathcal{D O} \mathcal{T P L O} \mathcal{T S}$

A dotplot consists of a graph in which each data value is plotted as a \square or dot \qquad along a scale of values. Dots representing equal values are stacked

Barry Bonds Batting Average

Before and After Alleged Drug Use

A stemplot (aka stem-and-leaf plot) represents _quantitative

 separating each value into two parts: the Stem| stem | leaf |
| :--- | :--- |
| 1 | 6 |
| 2 | 2489 |
| 3 | 0112345678 |
| 4 | 058 |
| 5 | 018 |
| 6 | 1 |

Boys	Girls	
7	0	
1	1	1
146	2	268
458	3	3446689
12289	4	436
3479	5	4
258	6	
13	7	

Example 1: Listed below are amounts of strontium-90 (in millibecquerels) in a simple random sample of Gaby teeth obtained from Pennsylvania residents born after 1979.

```
155
```


a. Construct a stemplot of the amounts of Strontium-90

11	46				
12	8	9			
13	0	3	6	7	8
14	0	2	2	4	5
5	5	79			
15	0	0	1	1	1
16	1	256688			
16	13	3	5	6	9
17	02				
18	8				

i. What does the stemplot suggest about the distribution?

Normal.
$\mathcal{B A R}$ GRAPH
9 Gar graph uses bars of e -equal \qquad width to show frequencies of categories of - qualitative qualitative data, The overitats sate reprosoms - -frequencies or \qquad frequencies. The horizontal scale identifies the different categories of qualitative data. The bars may or may not be se parated by small gaps.

A multiple bar graph has two or more sets of bars, and is used to compare two or more data

$\mathcal{P A R E T O} \mathcal{C H A R I S}$
A Pareto chart is a bar graph for qualitative

\qquad . The
 frequencies. The hor izontat scale identifies the different categories of --qualitative
data.

PIE $\mathcal{H} \mathcal{H} \mathcal{A} \mathcal{I}$
A pie chart is agraph that depicts \square data as slices of a qualitative
circle
--- for each category.

Example 2: Chief financial officers of U.S. companies were surveyed about areas in which job applicants make mistakes. Here are the areas and the frequency of responses: interview (452); résumé (297); cover letter (141); reference checks (143); interview follow-up (113); screening call (85).
a. Construct a pie chart representing the given data. sum of freaulncuo: 2

6. Construct a Pareto chart of the data.

c. Which graph is more effective in showing the importance of the mistakes made by job applicants? Pareto, but pie chart wan good too.

SCATTERPLOTS
A scatterplot (aka scatter diagram) is a plot of ordered pair quantitative data with a horizontal x-axis and a vertical y-axis. The horizontal axis is used for the first (\mathcal{X}) variable, and the vertical axis is used for the second variable. The pattern of the plotted points is oftentielpful

Scatter Plot, SAT vs. Beta Test
$\mathrm{N}=102, r=0.77$
95\% Confidence Interval: $r=0.68$ to 0.84

- Series 1 - Linear (Serie si)

TIMES ERIS GRAPH
\mathcal{A} time -series graph is a graph of time-series data, which are quantitative data that have been collected at different points in time

Nonzero axis
Some graphs are misleading because one or both of the_ axe be__-_-_ begin at some value other than Metro

The following statistics suggest that 16 -year-olds are safer drivers than people in their twenties, and that octogenarians are very safe. Is this true?

Graph is based on data from this study: Williams, Allan F., Ph.D., and Oliver Carston, Ph.D., "Driver Age and Crash Involvement," Am J Public Health 1989; 79: 326-327.

Graph is based on data from this study: Williams, Allan F., Ph.D., and Oliver Carston, Ph.D., "Driver Age and Crash Involvement," Am J Public Health 1989; 79: 326-327.

Solution: Xo. As the following graph shows, the reason 16-year-old and octogenarians appear to be safe drivers is that they don't drive nearly as much as people in other age groups.

Pictographs

Drawings of objects, often called pictographs, are often misleading.

