DEFINITION

Data are <u>Collections</u> of <u>Observations</u> (such as measurements, genders, survey responses).
Statistics is the Science of planning Studies
and <u>experiments</u> , obtaining <u>deta</u> , and
then <u>Nganinging</u> , <u>Summaringing</u> ,
presenting analyzing
interpreting, and drawing conclusions
based on the data.
A <u>population</u> is the complete collection of all <u>individuals</u> (scores, people, measurements, and so on) to be studied.
A <u>census</u> is the collection of <u>data</u> from <u>every</u> member of the population.
A <u>sample</u> is a <u>Subcollection</u> of members selected from a <u>population</u> .
Remember—garbage in, garbage out! Sample data must be collected through a
process of <u>fandom</u> selection. If sample data are not
collected in an appropriate way, the data may be completely <u>Weless</u> !

1.2 STATISTICAL THINKING

Key Concept...

When conducting a statistical analysis of data we have collected or analyzing a statistical analysis done by someone else, we should not rely on blind acceptance of mathematical calculations. We should consider these factors:

- π Context of the data
- π Source of the data
- π Sampling method

- π Conclusions
- π Practical implications

				2250	25642	1
650	24249	0		3000	23074	1
1050	20666	0		1750	28349	1
967	19413	0		1525	24644	1
500	21992	0	\sim	1500	23245	1
1700	21399	0	$\lambda $ λ^{1}	1500	24378	1
2000	22022	0		1250	23246	1
1100	25859	0	Not	1200	23695	1
1300	20390	0		1600	23258	1
1400	23738	0		425	19325	1
2250	23294	0	01)	1450	20397	1
800	19063	0	\sim	900	17256	1
3500	30131	0		675	19545	1
1200	18698	0		1450	20780	1
1250	25348	0				

Description: These data for the 1991 season of the National Football League were reported by the Associated Press.

Number of cases: 28

Variable Names:

- 1. TEAM: Name of team
- 2. QB: Salary (\$thousands) of regular quarterback
- 3. TOTAL: Total team salaries (\$thousands)
- 4. NFC: National Football Conference (1) or American Football Conference (0)

The Data:

TEAM	QB	TOTAL	NFC
BILLS	650	24249	0
BENGALS	1050	20666	0
BROWNS	967	19413	0
BRONCOS	500	21992	0
OILERS	1700	21399	0
COLTS	2000	22022	0
CHIEFS	1100	25859	0
RAIDERS	1300	20390	0
DOLPHINS	1400	23738	0
PATRIOTS	2250	23294	0
JETS	800	19063	0
STEELERS	3500	30131	0
CHARGERS	1200	18698	0

SEAHAWKS	1250	25348	0
FALCONS	2250	25642	1
BEARS	3000	23074	1
COWBOYS	1750	28349	1
LIONS	1525	24644	1
PACKERS	1500	23245	1
RAMS	1500	24378	1
VIKINGS	1250	23246	1
SAINTS	1200	23695	1
GIANTS	1600	23258	1
EAGLES	425	19325	1
CARDINALS	1450	20397	1
49ERS	900	17256	1
BUCCANEERS	675	19545	1
REDSKINS	1450	20780	1

Example 1: Refer to the data in the table below. The x-values are weights (in pounds) of cars; the yvalues are the corresponding highway fuel consumption amounts (in mi/gal).

Car Weights and Highway Fuel Consumption Amounts					
WEIGHT	4035	3315	4115	3650	3565
FUEL	26	31	29	29	30
CONSUMPTION					

- ما ا ا: مه
 - Context of the data. a.
 - ί. Are the x-values matched with the corresponding y-values? That is, is each x-value somehow associated with the corresponding y-value in some meaningful way?

yeo → the weight and mpg seems to refer to a particular car.

If the x and y values are matched, does it make sense to use the difference between each ii. x-value and the y-value that is in the same column? Why or why not?

No -> different whits.

b. Conclusion. Given the context of the car measurement data, what issue can be addressed by conducting a statistical analysis of the values?

The data can address if weight has an impact on fuel consumption.

Source of the data. Comment on the source of the data if you are told the car manufacturers supplied the values. Is there an incentive for car manufacturers to report values that are not accurate?

They may be reporting the mpg under sptimal conditions, the data could be generauoly rounded. The manufacturers want to sell cars, so they might be reporting the best performing models.

CREATED BY SHANNON MARTIN GRACEY

d. Conclusion. If we use statistical methods to conclude that there is a correlation between the weights of cars and the amounts of fuel consumption, can we conclude that adding weight to a car causes it to consume more fuel?

No!!! Correlation DOES NOT imply cause and effect!

Example 2: Form a conclusion about statistical significance. Do not make any formal calculations. Either use results provided or make subjective judgements about the results.

One of Gregor Mendel's famous hybridization experiments with peas yielded 580 offspring with 152 of those peas (or 26%) having yellow pods. According to Mendel's theory, 25% of the offspring should have yellow pods. Do the results of the experiment differ from Mendel's claimed rate of 25% by an amount that is statistically significant?

The experimental rebults seem close the theoretical results (12 off).

1.3 TYPES OF DATA

DEFINITION

A parameter is a <u>Numerical</u> measurement describing some
characteristic of a
A statistic is a <u>numerical</u> measurement describing some
characteristic of a <u>Sample</u> .

Example 3: Determine whether the given value is a statistic or a parameter.

a. 45% of the students in a calculus class failed the first exam.

parameter

b. 25 calculus students were randomly selected from all the sections of calculus I. 38% of these student failed the first exam.

Statistic

DEFINITION
Quantitative (aka numerical) data consist of <u>Numbers</u> representing <u>Counts</u> or <u>measurements</u> .
Categorical (aka qualitative or attribute) data consist of <u><u>NAMeS</u></u> or <u><u>labelo</u> that are not numbers representing counts or measurements.</u>
Give 2 examples of a. Quantitative data
1) tow many people like a certain type of muoic.
1) tow many people like a certain type of muoic. 2) Distance you drive to school.
b. Categorical data
() Genre of music (2) Type of milk (nonfat, 18, etc.) DEFINITION
Discrete data result when the number of possible values is either a
<u>countable</u> number.
Continuous (aka numerical) data result from many possible values that
correspond to some scale that covers a of values without gaps, interruptions or jumps.
Give 2 examples of a. Discrete data
 1) # of bananas in a bunch (2) # of fruit loops in a box of careal

b. Continuous data