5/10/12 Theoday 5/15 Thursday 5/17 . Warm up by finishing ·Finish Ch.9 Review for Final ν_0 7 Make 140 example 2 from 9.2 · Extracredit Theoday 5/22 Continue Ch.9 SLO assessment · Final exam from 5-7pm * Project DUE · Ch.9, 10 homework due

Example 2: Among 2739 female atom bomb survivors, 1397 developed thyroid diseases. Among 1352 male atom bomb survivors, 436 developed thyroid diseases (based on data from "Radiation Dose-Response Relationships for Thyroid Nodules and Autoimmune Thyroid Diseases in Hiroshima and Nagasaki Atomic Bomb Survivors 55-58 Years After Radiation Exposure," by Imaizumi, et al., *Journal of the American Medical Association*, Vol. 295, No. 9).

a. Use a 0.01 significance level to test the claim that the female survivors and male survivors have different rates of thyroid diseases.

$$\hat{P}_{1} = \frac{1397}{21739} \approx 0.510 \text{, } n_{1} = 2739 \quad \overline{P} = \frac{1391+436}{27391+1352} \approx 0.448$$

$$\hat{P}_{2} = \frac{136}{1552} \approx 0.322 \text{, } n_{2} = 1352 \quad \overline{q} = 0.5552$$

$$(1) \quad H_{0}: P_{1} = P_{2} \quad (2) \quad Z = \underbrace{0.510-0.322-0}_{\left(\frac{1409}{2739} + \frac{(.448)(.552)}{1352} - 11.57\right)} \quad (4) \text{ There is sufficient}$$

$$evidence \text{ to support} + \text{the claim that fumale}$$

$$and made \text{ survivors have}$$

$$\hat{P}(Z > 11.37) = 2\left[1 - P(Z < 11.37)\right] \quad P = 0.0002 \quad \text{output}$$
b. Construct the confidence interval corresponding to the hypothesis test diameters.

$$E = 2.575 \frac{(0.510)(0.490)}{2739} + \frac{(0.312)(0.678)}{1352}$$

 $F \approx 0.0409$

$$(0.510 - 0.322) - 0.0409 \leq P_1 - P_2 \leq (0.510 - 0.322) + 0.0409$$

 $0.147 \leq P_1 - P_2 \leq 0.229$

c. What conclusion does the confidence interval suggest?

The CI suggests that the rates are different since Zero is not included.

CH. 9

NAT	
51711	

9.3 INFERENCES ABOUT TWO MEANS: INDEPENDENT SAMPLES Key Concept... In this section, we present methods for using <u>Sample</u>

data	_from	independent	
samples to <u>test</u>	hypothes	es made about <u>2</u>	
population	meano	or to construct	
confidence	interro	Lestimat	es of the
difference	between	2 population	1
means			

CH. 9

PART I: INDEPENDENT SAMPLES WITH $\sigma_{\!_1}$ and $\sigma_{\!_2}$ unknown and not assumed equal

DEFINITION

Two Samples	are <u>independent</u> if the	Sample		
values	_ from one population <u>are</u>	mot		
related	or somehow	Ely paired		
or <u>matched</u>	with the <u>Sample</u>	alues		
from the other populati	on.			
Two <u>Samples</u> are <u>dependent</u> if the sample values are <u>paired</u> .				

CH. 9

Inferences about Means of Two Independent Populations, With $\sigma_{\!_1}$ and $\sigma_{\!_2}$ Unknown and Not Assumed to be Equal **OBJECTIVES** Test a claim about 2 independent pop. means on construct a CI estimate of the difference between Zindependent pop. means. NOTATION Population 1: $\mu_1 = population mean$ $s_1 = \text{sample standard}$ deviation $\sigma_1 = population standard$ deviation $n_1 = supe of the first sample$ $\overline{x_1} = \text{Sample mean}$ The corresponding notations for $\frac{M_2}{M_2}$, $\frac{\nabla_2}{\nabla_2}$, $\frac{\overline{\chi}_2}{\overline{\chi}_2}$, $\frac{\overline{\chi}_2}{\overline{\chi}_2}$, and $\underline{\Omega}_2$ apply to population $\underline{\mathcal{L}}$. REQUIREMENTS 1. ____ and <u>Sz</u> are <u>unknown</u> and it is not <u>assumed</u> that <u>_ Ti</u> and <u>Tz</u> are <u>equal</u>. 2. The _____ samples are __independent 3. Both samples are <u>Simple</u> <u>random</u> pamples 4. Either or both of these conditions are satisfied: The two Man \underline{Sys} are both \underline{Jarg} (with $\underline{n_1 > 30}$ and $\underline{n_2 > 30}$) or both

EQUIVALENCE OF METHODS

The <u><i>P-value</i></u>	method of hypothesis testing	, the traditional
method of hypothesis t	resting, and <u>confidence</u>	intervals all
use the same dist	ribution and stand	dand error,
so they are <u>equive</u>	lent in the sense that th	ney result in the <u>Same</u>
conclusion	. A null hypothesis of	$= M_2$ or
$M_1 - M_2 = O$	_ can be tested using the	<u>calue</u> method, the
traditional	method, or by determining wh	ether the
confidence	interval includes	Zero.

Example 1: Determine whether the samples are independent or dependent.

a. To test the effectiveness of Lipitor, cholesterol levels are measured in 250 subjects before and after Lipitor treatments.

b. On each of 40 different days, the author measured the voltage supplied to his home and he also measured the voltage produced by his gasoline powered generator.

Independent

Example 2: Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population

standard deviations are equal. A simple random sample of 13 four-cylinder cars is obtained, and the braking distances are measured. The mean braking distance is 137.5 feet and the standard deviation is 5.8 feet. A SRS of 12 six-cylinder cars is obtained and the braking distances have a mean of 136.3 feet with a standard deviation of 9.7 feet (based on Data Set 16 in Appendix B).

a. Construct a 90% CI estimate of the difference between the mean braking distance of four-cylinder cars and six-cylinder cars.

$$\begin{aligned} \widehat{\chi}_{1} &= 137.5, S_{1} = 5.8, n_{1} = 13 \\ \widehat{\chi}_{2} &= 136.3, S_{2} = 9.7, n_{2} = 12 \\ E &= 1.796 \left[\frac{5.8^{2}}{13} + \frac{9.7^{2}}{12} \right] \\ E &= 1.796 \left[\frac{5.8^{2}}{13} + \frac{9.7^{2}}{12} \right] \\ E &\gtrsim 5.8 \end{aligned}$$

$$(137.5 - 136.3) - 5.8 < M_1 - M_2 < (137.5 - 136.3) + 5.8$$

 $-4.6 < M_1 - M_2 < 7.0$

b. Does there appear to be a difference between the two means?

c. Use a 0.05 significance level to test the claim that the mean braking distance of four-cylinder cars is greater than the mean braking distance of six-cylinder cars.

(1)
$$H_0: M_1 = M_2$$

 $H_{A}: M_1 > M_2$
(2) $t = \frac{137.5 - 136.3 - 0}{\sqrt{\frac{5.8^2}{13} + \frac{9.7^2}{12}}}$
 $t \approx 0.372$
(3) (ritical value test
(traditional)
(laim that the mean
braking diotance of
faur-cylinder cars is
six-cylinder cars

PART 2: ALTERNATIVE METHODS

Part 1 in this section dealt with situations in which the two <u>population</u>
standard <u>deviations</u> are <u>unknown</u> and
assumed to be In Part 2 we address two other
situations: (1) The two <u>population</u> <u>standard</u>
deviations are both Known; (2) the two population
standard deviations are unknown but
assumed to be equal.
ALTERNATIVE METHOD WHEN $\sigma_{\!_1}$ and $\sigma_{\!_2}$ are known
In reality, the population standard deviations are almost
<u>Known</u> , but if they are known, the <u>test</u> <u>Statistic</u>
and confidence interval are based on the monthal
distribution instead of the <u>t</u> distribution
Inferences about Means of Two Independent Populations, With $\sigma_{\!_1}$ and $\sigma_{\!_2}$ Known
REQUIREMENTS
1. The two population standard deviations $\underline{\sigma}_{1}$ and $\underline{\sigma}_{2}$ are both <u>known</u> .
2. The two <u>Samples</u> are <u>independent</u> .
3. Both samples are <u>Simple</u> rondom <u>Samples</u> .

4. Either or both of these conditions is satisfied: The two sample sizes are both large, with $\underline{n_1 > 30}$ and $\underline{n_2 > 30}$ or both samples come from populations having monmal distributions. HYPOTHESIS TEST Test statistic: $Z = \frac{(\overline{x_1} - \overline{x_2}) - (u_1 - u_2)}{(\overline{u_1} + \overline{u_2})}$, where $u_1 - u_2 = 0$ under the mult P-values and critical values : Refer to Table AZ. CONFIDENCE INTERVAL ESTIMATE OF $\mu_1 - \mu_2$ $(\overline{x}_1 - \overline{x}_2) - E < M_1 - M_2 < (\overline{x}_1 - \overline{x}_2) + E$ $E = Z_{\alpha_{1}} \left[\int_{-\infty}^{2} + \int_{-\infty}^{2} \right]$

CH. 9

ALTERNATIVE METHOD: ASSUME THAT $O_1 = O_2$ and POOL THE SAMPLE
VARIANCES
Even when the specific values of $\underline{0}_{\underline{0}}$ and $\underline{0}_{\underline{2}}$ are <u>not</u> , if
it can be assumed that they have the <u>Same</u> value, the sample variances S_1^2 and S_2^2 can be pooled to obtain an estimate of
the <u>Common</u> population <u>Variance</u> . The
<u>pooled</u> estimate of σ^2 is denoted s^2 and

CONFIDENCE INTERVAL ESTIMATE OF $\mu_1 - \mu_2$ Confidence interval: $(\bar{x}_1 - \bar{x}_2) - E < M_1 - M_2 < (\bar{x}_1 - \bar{x}_2) + E$ where $E = t_{\alpha/2} \sqrt{\frac{Sp^2}{n_1} + \frac{Sp^2}{n_2}}$ and $\underline{Sp^2}$ is as given in the above test statistic and the number of degrees of freedom is $\underline{N_1 + N_2 - 2}$.

CH. 9

TI-83/84 PLUS

STAT TESTS 2-SAMPTtest (hypothesis test) or 2-SAMPTint (CI)

Example 3: Assume that the two samples are independent simple random samples selected from normally distributed populations. Also assume that the population standard deviations are equal. The mean tar content of a simple random sample of 25 unfiltered king size cigarettes is 21.1 mg, with a standard deviation of 3.2 mg. The mean tar content of a SRS of 25 filtered 100 mm cigarettes is 13.2 mg with a standard deviation of 3.7 mg (based on Data Set 4 in Appendix B).

a. Construct a 90% CI estimate of the difference between mean tar content of unfiltered king size cigarettes and the mean tar content of filtered 100 mm cigarettes.

$$\overline{x}_{1} = 21.1, S_{1} = 3.2, n_{1} = 25 \overline{x}_{2} = 13.2, S_{2} = 3.7, n_{2} = 25 21.1 - 13.2) - 1.6 < \mu_{1} - \mu_{2} < (21.1 - 13.2) + 1.6 6.3 < \mu_{1} - \mu_{2} < (21.1 - 13.2) + 1.6 6.3 < \mu_{1} - \mu_{2} < (21.1 - 13.2) + 1.6 E = 1.676 \sqrt{\frac{11.965}{25} + \frac{11.965}{25}} E \gtrsim 1.6$$

b. Does the result suggest that 100 mm filtered cigarettes have less tar than unfiltered king size cigarettes?

c. Use a 0.05 significance level to test the claim that unfiltered king size cigarettes have a mean tar content greater than that of filtered 100 mm cigarettes. What does the reslt suggest about the effectiveness of cigarette filters?

(1)
$$H_0: M_1 = M_2$$

 $H_A: X_1 > X_2$
(2) $t = \frac{(21.1 - 13.2) - 0}{\int \frac{11.965}{25} + 11.965} \approx 8.075$
(3) $P-value < 0.005 \rightarrow 0.005 < 0.05
(4) There's sufficient evidence to support
the claim that unfiltered king singenerites have a mean tan content
greater than that of filtered loomm$

9.4 INFERENCES FROM DEPENDENT SAMPLES Key Concept...

In this section we present methods for testing hypotheses and constructing

confidence intervals	involving the		of the
	of the		_ of two
	With		samples, there is some
	whereby ec	ach value in one	e sample is
with a	value ir	n the other san	nple. Here are two typical
examples of depende	nt samples:		
π Each pair of sar	nple values con	sists of two me	easurements from the
	_subject		
π Each pair of sar	nple values con	sists of a	
Because the hypothe	sis test and CI	use the same <u>-</u>	and
		, they are	in the
sense that they resul	t in the		
Consequently, the		hypothesis the	at the
		can	be tested by determining
whether the			includes
There are no exact p	rocedures for	dealing with	

GRACEY/STATISTICS		СН. 9
samples, but the	serves as a rea	asonably good

approximation, so the following methods are commonly used.

Inferences about M	eans of Two Depend	dent Population	าร
NOTATION			
d =		$s_d =$	
μ_{d}			
$\overline{d} =$		n =	
REQUIREMENTS			
1. The	_ data are		
2 The samples are			
3. Either or both of	these conditions are	e satisfied: Th	e number of
of	is	. ()	or the pairs of values
have	that are from	m a population	that is approximately
			······
HYPOTHESIS TEST	FOR DEPENDENT	SAMPLES	
<i>t</i> =			

Degrees of Freedom:	
<i>P</i> -values and critical values: Use Table A-3.	
CONFIDENCE INTERVALS FOR DEPENDENT SAMPLES	
where	
and	

Example 1: Assume that the paired sample data are SRSs and that the differences have a distribution that is approximately normal.

- a. Listed below are BMIs of college students.April BMI20.1519.2420.7723.8521.32September BMI20.6819.4819.5924.5720.96
 - i. Use a 0.05 significance level to test the claim that the mean change in BMI for all students is equal to 0.

ii. Construct a 95% CI estimate of the change in BMI during freshman year.

iii. Does the CI include zero, and what does that suggest about BMI during freshman year?

b. Listed below are systolic blood pressure measurements (mm Hg) taken from the right and left arms of the same woman. Use a 0.05 significance level to test for a difference between the measurements from the two arms. What do you conclude?

Right arm	102	101	94	79	79
Left arm	175	169	182	146	144