CHAPTER 7:  SEQUENCES, SERIES, AND COMBINATORICS
7.1 SEQUENCES AND SERIES
· SEQUENCE:  A sequence is a function where the domain is a set of consecutive positive integers beginning with 1.

· INFINITE SEQUENCE:  An infinite sequence is a function having for its domain the set of positive integers, 
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· FINITE SEQUENCE:  A finite sequence is a function having for its domain a set of positive integers, 
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 for some positive integer n.

· The function values are considered the terms of the sequence.

· The first term of the sequence is denoted with a subscript of 1, for example, 
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, and the general term has a subscript of n, for example, 
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· Example:  Find the first four terms, 
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 from the given nth term of the sequence, 
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Solution:  
The first four terms:
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· Finding the General Term:  When only the first few terms of a sequence are known, we can often make a prediction of what the general term is by looking for a pattern.

· Example:  Predict the general term of the sequence -1, 3, -9, 27, -81, . . .

Solution:  These are powers of three with alternating signs, so the general term might be 
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· Sums and Series

· Series:  Given the infinite sequence 
[image: image11.wmf]1234

,,,,,,

n

aaaaa

KK

, the sum of the terms 
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 is called an infinite series.  A partial sum is the sum of the first n terms 
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  A partial sum is also called a finite series or nth partial sum, and is denoted 
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· Sigma Notation:  The Greek letter 
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 (sigma) can be used to denote a sum when the general term of a sequence is a formula.

· Example:  The sum of the first four terms of the sequence 3, 5, 7, 9, . . ., 
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· Recursive Definitions:  A sequence may be defined recursively or by using a recursion formula.  Such a definition lists the first term, or the first few terms, and then describes how to determine the remaining terms from the given terms.

· Example:  Find the first 5 terms of the sequence defined by 
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Solution:
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7.2 ARITHMETIC SEQUENCES AND SERIES
· Arithmetic Sequences:  A sequence is arithmetic if there exists a number d, called the common difference, such that 
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 for any integer 
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· nth Term of an Arithmetic Sequence:  The nth term  of an arithmetic sequence is given by 
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· Example:  Find the 14th term of the arithmetic sequence 4, 7, 10, 13, . . .

Solution:  

[image: image24.wmf](

)

(

)

1

1

14

4, 743, and 14.

1

4141343.

n

adn

aand

a

==-==

=+-

=+-×=


· Example:  Which term is 301 from the sequence above?

Solution:  
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· Sum of the First n Terms of an Arithmetic Sequence

· Consider the arithmetic sequence 3, 5, 7, 9, . . .  When we add the first four terms of the sequence, we get 
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, which is 3 + 5 + 7 +  9, or 24.  This sum is called an arithmetic series.  To find a formula for the sum of the first n terms, 
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, of an arithmetic sequence, we first denote an arithmetic sequence, as follows:
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reversing the order gives us
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adding these two sums we have,
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Notice that all of the brackets simplify to 
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So the sum of the first n terms of an arithmetic sequence is given by
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7.3 GEOMETRIC SEQUENCES AND SERIES
· GEOMETRIC SEQUENCE:  A sequence is geometric if there is a number r, called the common ratio, such that 
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· nth TERM OF A GEOMETRIC SEQUENCE:  The nth term of a geometric is given by 
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· SUM OF THE FIRST n TERMS:  The sum of the first n terms of a geometric sequence is given by 
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· INFINITE GEOMETRIC SERIES:  The sum of the terms of an infinite geometric sequence is an infinite geometric series.  For some geometric sequences, 
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 gets close to a specific number as n gets very large.  For example, consider the infinite series 
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· LIMIT OR SUM OF AN INFINITE GEOMETRIC SERIES

· When 
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7.4 MATHEMATICAL INDUCTION
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7.5 COMBINATORICS: PERMUTATIONS
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