CHAPTER 5:  SYSTEMS OF EQUATIONS AND MATRICES
5.1 SYSTEMS OF EQUATIONS IN TWO VARIABLES

· A system of equations is composed of two or more equations considered simultaneously

· You must have as many equations as you have variables if your goal is to solve the system of equations.

· In a system of 2 linear equations in two variables there are 3 possible outcomes
· You can get an ordered pair as a solution (one value for x and one value for y)

· This means that the two lines intersect at exactly one point

· This is a consistent and independent system
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· You can get an identity as a solution

· This means that the two lines are co-linear (on top of each other)

· This is a consistent and dependent system
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· You can get a contradiction as a solution

· This means that the two lines parallel

· This is an inconsistent and independent system
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· Solving Systems Graphically

· Solve each equation for y
· Graph each line, either by hand or on your calculator

· Find out where they intersect

· On your calculator, there is an INTERSECT feature

· You need to move to the left of where the lines intersect and push enter then move to the right of where the lines intersect and push enter, then push enter again and the result will come up on the screen

· Remember…the calculator will often give you an ESTIMATE!

· The Substitution Method

· Use this method when a variable is alone on one side of the equation or when it is easy to solve for a variable
· To solve an equation by substitution, first solve one equation for one of the variables

· Then plug in the expression you got in the first step for that variable in the other equation

· Then substitute the numeric result into either equation to solve for the other variable

· Example:  
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Solution:
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So we have the ordered pair 
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 as our solution.

· The Elimination Method

· The goal is to eliminate a variable by adding the two equations, solve for the remaining variable, and then back substitute to solve for the eliminated variable

· Example:  
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Solution:
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multiplying the first equation by 5 gives us
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back substituting x = 3 gives us
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so we have the ordered pair 
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 as our solution

· Applications

· Annual College Spending

College students spend $183 more each year on textbooks and course materials than on computer equipment.  They spend a total of $819 on textbooks and course materials and computer equipment each year.

Solution:  Let x represent the amount spent on textbooks and 

      course materials

      Let y represent the amount spent on computer 

      equipment

    
So we have the following system of equations:
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We will use the substitution method to solve:
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So $501 is spent on textbooks and course 

materials, and $318 is spent on computer 

equipment

· Motion

Two private airplanes travel toward each other from cities that are 780km apart at speeds of 190km/h and 200km/h.  They left at the same time.  In how many hours will they meet?

	
	Distance
	Rate
	Time

	Plane 1
	d
	190
	t

	Plane 2
	780-d
	200
	t
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5.2 SYSTEMS OF EQUATIONS IN THREE VARIABLES

· Gaussian Elimination
· We want to transform the original system into one that is in the form of 
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· We can 1) interchange any two equations, 2) multiply both sides of one equation by a nonzero constant, and/or 3) add a nonzero multiple of one equation to another equation.

· Applications
· Nutrition
A diabetic patient wishes to prepare a meal consisting of roasted chicken breast, mashed potatoes, and peas.  A 3-oz of roasted skinless chicken breast contains 140 Cal, 27g of protein, and 64mg of sodium.  A one cup serving of mashed potatoes contains 160 Cal, 4g of protein and 636mg of sodium.  A one cup serving of peas contains 125 Cal, 8g of protein, and 139mg of sodium.  How many servings of each should be used if the meal is to contain 415 Cal, 50.5g of protein, and 553mg of sodium?

Solution:  Let x, y, and z represent the number of servings of chicken, mashed potatoes, and peas to be used, respectively.  The resulting equation is:
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Now you try to solve the system.

5.3 MATRICES AND SYSTEMS OF EQUATIONS

· Matrices and Row-Equivalent Operations
· A matrix is just a different way to solve a system of equations

· With matrices, only the numerical coefficients are used

· The equals signs are replaced with a vertical line

· Example:  


can be written




[image: image22.wmf]237,

42

xy

xy

-=

+=-




         
[image: image23.wmf]23  7

1  42

é-ù

êú

-

ëû



[image: image24.wmf]23

1  4

-

éù

êú

ëû

 is the coefficient matrix and  
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 is the augmented matrix.

· The rows of a matrix are horizontal and the columns are vertical.

· A matrix with m rows and n columns is said to be of order m x n.
· If m = n, the matrix is said to be square.

· The numbers in a matrix are called entries. 

· Gaussian Elimination with Matrices

· Row-Equivalent Operations

1. Interchange any two rows.

2. Multiply each entry in a row by the same nonzero constant.

3. Add a nonzero multiple of one row to another row.
· Row-Echelon Form

1. If a row does not consist entirely of zeros, then the first nonzero element in the row is a 1 (called a leading 1).

2. For any two successive nonzero rows, the leading 1 in the lower row is farther to the right than the leading 1 in the higher row.

3. All the rows consisting entirely of zeros are at the bottom of the matrix.

If a fourth property is also satisfied, a matrix is said to be in reduced row-echelon form:
4. Each column that contains a leading 1 has zeros everywhere else.

· Example:  The following matrix is in row-echelon form: 
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· Example:  The following matrix is in reduced row-echelon form: 
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· Gauss-Jordan Elimination
· Puts the matrix into reduced row-echelon form

5.4 MATRIX OPERATIONS

· A capital letter is generally used to name a matrix, and lower-case letters with double subscripts are used to denote its entries.  

· A general term is represented by 
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· Below is an example of a general 3 x 3 matrix named A.
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· Two matrices are equal if they have the same order and corresponding entries are equal.

· Matrix Addition and Subtraction

· Addition and Subtraction of Matrices

Given two m x n matrices 
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· Scalar Multiplication

· When we the product of a number and a matrix, we obtain a scalar product.

· Scalar Product

The scalar product of a number k and a matrix A is the matrix denoted by kA, obtained by multiplying each entry of A by the number k.  The number k is called a scalar.

· Properties of Matrix Addition and Scalar Multiplication

For any m x n matrices A, B, and C and any scalars k and l:
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(Commutative Property of Addition)
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(Associative Property of Addition)
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(Associative Property of Scalar 

Multiplication)
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(Distributive Property)
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(Distributive Property)
There exists a unique matrix 0 such that:
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(Additive Identity Property)
There exists a unique matrix -A such that:
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(Additive Inverse Property)
· Products of Matrices

· Matrix Multiplication

· The number of columns in the first matrix must match the number of rows in the second matrix!!!

For an m x n matrix 
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· Properties of Matrix Multiplication

For matrices A, B, and C, ASSUMING THAT THE INDICATED OPERATIONS ARE POSSIBLE:
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(Associative Property of Multiplication)
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(Distributive Property)
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(Distributive Property)

5.5 INVERSES OF MATRICES

· The Identity Matrix
· Recall that for real numbers, 1 is the identity element for multiplication

· Identity Matrix 

For any positive integer n, the n x n identity matrix is an n x n matrix with 1’s on the main diagonal and 0’s elsewhere and is denoted by 
[image: image48.wmf]100

0100

00

001

éù

êú

êú

=

êú

êú

ëû

I

L

L

MO

L

.  So 
[image: image49.wmf].

==

AIIAA


· Inverse of a Matrix

· Recall that for every nonzero real number a, there is a multiplicative inverse 1/a, or 
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· Inverse of a Matrix

For an n x n matrix A, if there is a matrix 
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 is the inverse of A.
· Not every matrix has an inverse!

· Solving Systems of Equations

· We can write a system of n linear equations in n variables as a matrix equation 
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  If A has an inverse, then the system of equations has a unique solution that can be found by solving for X, as follows:
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5.6 DETERMINANTS AND CRAMER’S RULE

· Determinants of Square Matrices

· With every square matrix, we associate a number called its determinant.

· Determinant of a 2 x 2 Matrix

The determinant of the matrix 
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· Example:  Evaluate 
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Solution:
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· Evaluating Determinants Using Cofactors

· Minor

· For a square matrix 
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· Cofactor

· For a square matrix 
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· Determinant of Any Square Matrix

· For any square matrix A of order n x n (n > 1), we define the determinant of A, denoted 
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A

 as follows.  Choose any row or column.  Multiply each element in that row or column by its cofactor and add the results.  The determinant of a 1 x 1 matrix is simply the element of the matrix.  The value of the determinant will be the same no matter which row or column is chosen.

· Cramer’s Rule

· Determinants can be used to solve systems of linear equations.

· Consider a system of two linear equations:
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Solving the system, we have








[image: image73.wmf](

)

11

111

1

222

21211212

21121221

12211221

1221

1

1

1

221

1

cby

axbycx

a

abyc

acabyabyac

abyabyacac

yababacac

acac

y

ab

c

ab

by

a

-

+=®=

æö

+=

ç÷

èø

-+=

-+=-

-=

-

-

-

-

=


 and 




 
[image: image74.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

1221

111

1221

1221111221111221

1221111221112211

122111122121

12

112

12211121112

21

122

122

1

acac

yaxbc

abab

ababaxabcabccabab

ababaxcabababcabc

ababaxcababababc

ababaxabcabc

acac

abb

abb

a

a

æö

-

=®+=

ç÷

-

èø

-+-=-

-=--+

-=-+

-=-

-

-

-

-

(

)

(

)

(

)

1112112

12212112

2112

1221

1221

1221

axabcbc

ababxbcbc

bcbc

x

abab

cbcb

x

abab

=-

-=-

-

=

-

-

=

-





Converting these to determinants, we have
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· Cramer’s Rule for 2 x 2 Systems

· The solution of the system of equations
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is given by
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where
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· Cramer’s Rule for 3 x 3 Systems

· The solution of the system of equations
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is given by
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where
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· Note:  Cramer’s rule cannot be used if

· 
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· 
[image: image84.wmf]0

D

=

, and one of 
[image: image85.wmf], , and 

xyz

DDD

 are not zero, the equations are inconsistent.

5.7 SYSTEMS OF INEQUALITIES AND LINEAR PROGRAMMING

· Graphs of Linear Inequalities
· A statement like 
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 is a linear inequality in two variables.

· Linear Inequality in Two Variables

A linear inequality in two variables is an inequality that can be written in the form 
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· The solution set of an inequality are all the ordered pair that make it true.

· The graph of an inequality represents its solution set.

· To Graph a Linear Inequality in Two Variables:

1. Replace the inequality symbol with an equals sign and graph this related equation.  If the inequality symbol is < or > draw the line dashed.  If the inequality symbol is 
[image: image92.wmf]£

 or 
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 draw the line solid.
2. The graph consists of a half-plane on one side of the line and, if the line is solid, the line as well.  To determine which half-plane to shade, test a point not on the line in the original inequality.  If that point is a solution, shade the half-plane containing that point.  If not, shade the opposite half-plane.

· Systems of Linear Inequalities
· A system of inequalities in two variables consists of two or more inequalities in two variables considered simultaneously.

· Applications

· Linear Programming

· Linear Programming Procedure

To find the maximum or minimum value of a linear objective function subject to a set of constraints:

1. Graph the region of feasible solutions.

2. Determine the coordinates of the vertices of the region.

3. Evaluate the objective function at each vertex.  The largest and smallest of those values are the maximum and minimum values of the function, respectively.

· Example:  Maximizing Income.  Margaret is planning to invest up to $22,000 in certificates of deposit at City Bank and People’s Bank.  She wants to invest at least $2,000 but no more than $14,000 at City Bank.  People’s Bank does not insure more than a $15,000 investment, so she will invest no more than that in People’s Bank.  The interest is 6% at City Bank and 6½% at Peoples Bank.  This is simple interest for one year.  How much should she invest in each bank in order to maximize her income?  What is the maximum income?
Solution:  Let x be the amount invested in City Bank and y be the amount invested in People’s Bank.  We need to find the maximum value of 
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5.8 PARTIAL FRACTIONS

· There are situations in Calculus where it is useful to write a rational expression as a sum of two or more simpler rational expressions.
· Partial Fraction Decompositions

· This procedure involves factoring its denominator into linear and quadratic factors.

· Procedure for Decomposing a Rational Expression into Partial Fractions

Consider any rational expression 
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1. If the degree of 
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 and follow steps 2-5 to decompose the resulting rational expression. 

2. If the degree of 
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3. Assign to each linear factor 
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4. Assign to each quadratic factor 
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5. Apply algebraic methods to find the constants in the numerators of the partial fractions.

· Example:  Decompose into partial fractions:
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Solution:  
[image: image115.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

2

413413

26223

413

223223

232

413

223223

413232

1333

 413232

2222

7

72

2

xx

xxxx

xAB

xxxx

AxBx

x

xxxx

xAxBx

letxAB

BB

--

=

+-+-

-

=+

+-+-

-++

-

=

+-+-

-=-++

æöæö

æöæöæö

=®-=-++

ç÷ç÷ç÷

ç÷ç÷

èøèøèø

èøèø

æö

-=®=-

ç÷

èø


_1192274505.unknown

_1192885151.unknown

_1192891220.unknown

_1193133220.unknown

_1193133341.unknown

_1193133400.unknown

_1193133613.unknown

_1193133974.unknown

_1193134496.unknown

_1193133742.unknown

_1193133533.unknown

_1193133451.unknown

_1193133491.unknown

_1193133354.unknown

_1193133246.unknown

_1192899879.unknown

_1193133197.unknown

_1192900412.unknown

_1193133161.unknown

_1192891483.unknown

_1192891497.unknown

_1192891239.unknown

_1192890707.unknown

_1192891019.unknown

_1192891134.unknown

_1192891196.unknown

_1192891114.unknown

_1192890811.unknown

_1192890910.unknown

_1192890796.unknown

_1192889943.unknown

_1192890246.unknown

_1192890333.unknown

_1192890170.unknown

_1192889678.unknown

_1192889912.unknown

_1192886088.unknown

_1192523056.unknown

_1192529122.unknown

_1192529378.unknown

_1192884727.unknown

_1192885036.unknown

_1192529389.unknown

_1192529299.unknown

_1192529329.unknown

_1192529147.unknown

_1192528786.unknown

_1192528855.unknown

_1192528923.unknown

_1192528814.unknown

_1192523533.unknown

_1192528726.unknown

_1192523181.unknown

_1192521543.unknown

_1192522834.unknown

_1192522966.unknown

_1192522997.unknown

_1192522861.unknown

_1192522408.unknown

_1192522739.unknown

_1192521594.unknown

_1192356930.unknown

_1192521503.unknown

_1192521273.unknown

_1192521423.unknown

_1192357066.unknown

_1192274606.unknown

_1192274735.unknown

_1192274605.unknown

_1191918606.unknown

_1192272919.unknown

_1192273502.unknown

_1192274468.unknown

_1192274480.unknown

_1192273546.unknown

_1192274287.unknown

_1192273422.unknown

_1192273464.unknown

_1192273227.unknown

_1192270519.unknown

_1192271628.unknown

_1192271629.unknown

_1192270574.unknown

_1191924281.unknown

_1192270205.unknown

_1191919022.unknown

_1191916269.unknown

_1191917118.unknown

_1191917401.unknown

_1191918487.unknown

_1191917240.unknown

_1191916700.unknown

_1191916760.unknown

_1191916575.unknown

_1191915848.unknown

_1191916157.unknown

_1191916226.unknown

_1191915905.unknown

_1191914492.unknown

_1191914584.unknown

_1191914246.unknown

