CHAPTER 4:  EXPONENTIAL AND LOGARITHMIC FUNCTIONS
4.1 INVERSE FUNCTIONS
· INVERSES

· Inverse Relation

Interchanging the first and second coordinates of each ordered pair in a relation produces the inverse relation.

If a relation is defined by an equation, interchanging the variables produces an equation of the inverse relation.
· Example:  Find the inverse of the relation 
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Solution:  
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Notice that the pairs in the inverse are reflected across the line 
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· Example:  Find an equation of the inverse relation 
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Solution:  
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· One-to-One Functions
A function 
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 is one-to-one if different inputs have different outputs—that is, if 
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  Or a function 
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 is one-to-one if when the outputs are the same, the inputs are the same—that is if 
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· Properties of One-to-One Functions and Inverses
· If a function is one-to-one, then its inverse is a function.

· The domain of a one-to-one function 
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 is the range of the inverse 
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· The range of a one-to-one function 
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 is the domain of the inverse 
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· A function that is increasing over its domain or is decreasing over its domain is a one-to-one function.

· Horizontal Line Test
If it is possible for a horizontal line to intersect the graph of a function more than once, then the function is not one-to-one and its inverse is not a function.

· Finding Formulas for Inverses
· Obtaining a Formula for an Inverse

If a function 
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 is one-to-one, a formula for its inverse can generally be found as follows:

1. Replace 
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2. Interchange 
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 and 
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3. Solve for 
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4. Replace 
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 with 
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· Example:  If the function is one-to-one, find a formula for the inverse:  
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Solution:  First we graph the function to see if it will pass the horizontal line test.  As you can see from the graph below, it will, so we have a one-to-one function.
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Now we can use the steps above to find the inverse function.  

1.
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The graph of 
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 is a reflection of the graph of 
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 across the line 
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· Inverse Functions and Composition

If a function 
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 is one-to-one, then 
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 is the unique function such that each of the following holds:  
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· Restricting a Domain
· If the inverse of a function is not a function, we can restrict the domain so that the inverse is a function.

· Example:  Consider 
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  If we try to find a formula for the inverse, we have

 
[image: image39.wmf]2

2

xy

yx

yx

=

=

=±


This is not the equation of a function.  We can, however, only consider inputs from 
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  This will yield an inverse that is a function.
4.2 EXPONENTIAL FUNCTIONS AND GRAPHS
· Graphing Exponential Functions
· Exponential Function

The function 
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 is a real number, 
[image: image43.wmf]0, and 1,

aa

>¹

 is called the exponential function, base 
[image: image44.wmf].

a


· Example:  Graph 
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· Applications

· Compound Interest

· 
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· The number e
· Using the formula 
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, we suppose that $1 is invested at 100% interest for 1 year.  This gives us 
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  You will find that as 
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· Graph of 
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4.3 LOGARITHMIC FUNCTIONS AND GRAPHS
WARM-UP
Graph the exponential function 
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 and the line 
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 on the same set of axes.
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Recall that if you have a one-to-one function, its inverse is a function.  Is 
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 a one-to-one function? _______  Why? 

Recall that a function of the form 
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is called an exponential function.  

Also recall that when we find an inverse algebraically we 

1. Change  
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3. Solve for 
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Let’s try finding the inverse of 
[image: image92.wmf]()2

x

fx

=

 algebraically.

1. 
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3. We haven’t done this before!  

This is where logarithms come in to play.  

Always remember 

A LOGARITHM IS AN EXPONENT!!!  

Also remember that the word “is” in math language means “equals”.


Definition of Logarithm:

If  
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· 
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 means “the log (or logarithm) of x to base b.

· In plain words we say “the power to which we raise b to get x” when we see 
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Let’s practice:

Write each of the following logarithmic equations as an exponential equation.

1. 
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2. 
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3. 
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4. 
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Write each of the following exponential equations as an exponential equation.

1. 
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· Natural Logarithms

· Logarithms, base e, are called natural logarithms.  The abbreviation “ln” is used for natural logarithms.  
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· Changing Logarithmic Bases

· The Change-of-Base Formula

For any logarithmic bases a and b, and any positive number m, 
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4.4 PROPERTIES OF LOGARITHMIC FUNCTIONS
· Logarithms of Products

· The Product Rule

For any positive numbers M and N and any logarithmic base a, 
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  The logarithm of a product is the sum of the logarithms of the factors.
· Proof:  Let 
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  Now, 
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  This gives us 
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  Substituting, we have 
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· The Power Rule

For any positive number M, any logarithmic base a, and any real number p, 
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  The logarithm of a power of M is the exponent times the logarithm of M.
· Proof:  Let 
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  This gives us 
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  Substituting, we have 
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· The Quotient Rule

For any positive numbers M and N and any logarithmic base a, 
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  The logarithm of a quotient is the logarithm of the numerator minus the logarithm of the denominator.
· Proof:  
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· Properties of Logarithms:

If 
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4.5 SOLVING EXPONENTIAL AND LOGARITHMIC FUNCTIONS
· Equations with variables in the exponents are called exponential equations
· One way to solve these equations is to manipulate each side so that each side is a power of the same number.

· Example:  
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 can be written as 
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  Then we just set the quantities in the exponents equal to each other and solve.  
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· Base-Exponent Property

For any 
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· Example:  Solve 
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Solution:  
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· Property of Logarithmic Equality

For any 
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· Solving Logarithmic Equations
· Equations containing variables in logarithmic expressions are called logarithmic equations.

· To solve, we try to obtain a single logarithmic expression on one side of the equation and then write an equivalent exponential equation.

· Example:  Solve 
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Solution:
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4.6 APPLICATIONS AND MODELS:  GROWTH AND DECAY, AND COMPOUND INTEREST
· Population Growth
· The function 
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 is a model of many kinds of population growth
· 
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· Interest Compounded Continuously

· The function 
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 is also a model for compound interest

· 
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 is the initial investment, 
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 is the amount of money in the account after 
[image: image143.wmf]t

 years, and 
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 is the interest rate compounded continuously

· Growth Rate and Doubling Time

The growth rate 
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 and the doubling time 
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 are related by 
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· Proof:  If we substitute 
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· Models of Limited Growth

· 
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 is a logistic function which increases toward a limiting value 
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  Therefore, the line 
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· Used in situations where there are factors that prevent a population from exceeding some limiting value

· Exponential Decay

· The function 
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 is an effective model of the decline or decay of a population or substance
· 
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 is the amount of the substance at time 0, 
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 is called the decay rate.

· Converting from Base b to Base e 
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