Section 6.6: SOLVING QUADRATIC EQUATIONS BY FACTORING

When you are done with your homework you should be able to ...

- $\pi~$ Use the zero-product principle
- π Solve quadratic equations by factoring
- $\pi~$ Solve problems using quadratic equations

WARM-UP:

1. Factor:

 $x^2 - 8x + 7$

2. Solve: x - 7 = 0

DEFINITION OF A QUADRATIC EQUATION

A	in is an e	quation that can
be written in the		
where,, and	are real numbers, with	A
	in is also calle	

____equation in ______.

MATH 830/GRACEY

SOLVING QUADRATIC EQUATIONS BY FACTORING

Consider the quadratic equation $x^2 - 8x + 7 = 0$. How is this different from the first warm-up?

We can	the	side of the	
equation	to get		If a quadratic
equation has a zero	o on one side and a		
on the other side,	it can be	using the	
	principle.		

THE ZERO-PRODUCT PRINCIPLE

If the	_ of two or more	expressions is
, then		one of them is
to		

Example 1: Solve the following equations:

a. 2x - 11 = 0 **b.** x + 1 = 0

c. (2x-11)(x+1)=0

STEPS FOR SOLVING A QUADRATIC EQUATION BY FACTORING

1. If necessary,	the equation in		form	
	, moving all	to one s	side, thereby	
obtaining	on the othe	er side.		
2				
3. Apply the		principle, setti	ing each	
	_ equal to			
4	the equations form	ned in step 3.		
5 equation.	the	in the		

6.6

Example 2: Solve:

$$a. \quad x(x+9) = 0$$

b. 8(x-5)(3x+11) = 0

c.
$$x^2 + x - 42 = 0$$

d.
$$x^2 = 8x$$

e.
$$4x^2 = 12x - 9$$

f. (x+3)(3x+5) = 7

$$g. \quad x^3 - 4x = 0$$

h.
$$(x-3)^2 + 2(x-3) - 8 = 0$$

APPLICATION

An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The formula $h = -16t^2 + 72t$ describes the height of the debris above the ground, h, in feet, t seconds after the explosion.

a. How long will it take for the debris to hit the ground?

b. When will the debris be 32 feet above the ground?