Section 6.5: A GENERAL FACTORING STRATEGY

When you are done with your homework you should be able to...

- π Recognize the appropriate method for factoring a polynomial
- $\boldsymbol{\pi}$. Use a general strategy for factoring polynomials

WARM-UP:

Multiply:

a.
$$(x+1)(x^2-x+1)$$

b.
$$(2x-3y)(4x^2+6xy+9y^2)$$

A STRATEGY FOR FACTORING A POLYNOMIAL

1. If there is a	factor other than, factor the				
·					
2. Determine the	of	in the polynomial and			
try factoring as follows:					
a. If there are	terms, can the _	be factored			
by one of the following special forms?					
	of	;			

		of		:				
	:							
	b. If there are		terms, is	_ terms, is the				
					? If so,			
	factor by one of the following special forms:							
			=_					
			=					
	If the trinon	nial is	a					
		, try		by	and			
		or _		·				
	c. If there are		or		terms, try			
		by _		·				
3.	Check to see if any	<i>'</i>	w	ith more th	an one term in the			
				can be facto	pred			
	I	If so, completely.						
4.		by		·				

Example 1: Factor

a.
$$5x^4 - 45x^2$$

b.
$$4x^2 - 16x - 48$$

c.
$$4x^5 - 64x$$

d.
$$x^3 - 4x^2 - 9x + 36$$

e.
$$3x^3 - 30x^2 + 75x$$

f.
$$2w^5 + 54w^2$$

g.
$$3x^4y - 48y^5$$

h.
$$12x^3 + 36x^2y + 27xy^2$$

i.
$$12x^2(x-1)-4x(x-1)-5(x-1)$$

j.
$$x^2 + 14x + 49 - 16a^2$$

APPLICATION

Express the area of the shaded ring shown in the figure in terms of π . Then factor this expression completely.

