Section 6.4: FACTORING SPECIAL FORMS

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Factor trinomials by trial and error
- π Factor trinomials by grouping

WARM-UP:

Factor:

a.
$$3a^2 - ab - 14b^2$$

c.
$$80z^3 + 80z^2 - 60z$$

b.
$$12x^2 - 33x + 21$$

d.
$$-10x^2y^4 + 14xy^4 + 12y^4$$

THE DIFFERENCE OF TWO SQUARES

If _____ and ____ are real numbers, or _____ expressions, then

The _____ of the ____ of ____ factors as the _____ of a ____ and a ____ of those terms.

16 PERFECT SQUARES

$$100 =$$

$$9 =$$
_____ $49 =$ _____ $121 =$ _____ $225 =$ _____

Example 1: Factor.

a.
$$x^2 - 144$$

c.
$$25-4x^{10}$$

b.
$$16x^2 - 196y^2$$

d.
$$18x^3 - 2x$$

FACTORING PERFECT SQUARE TRINOMIALS

Let ____ and ____ be real numbers, _____, or

_____expressions.

$$A^2 + 2AB + B^2 = \underline{\hspace{1cm}}$$

$$A^2 - 2AB + B^2 =$$

 π The _____ and ____ terms are _____

of______or _____.

 π The _____ term is ____ the

_____ of the _____ being ____

in the _____ and ____ terms.

Example 2: Factor.

a
$$9x^2 + 6x + 1$$

c.
$$x^2 - 18xy + 81y^2$$

h
$$x^2 + 4x + 4$$

d.
$$2y^2 - 40y + 200$$

FACTORING THE SUM OR DIFFERENCE OF TWO CUBES

Let _____ and _____, or

_____ expressions.

$$A^3 + B^3 =$$

$$A^3 - B^3 =$$

Example 3: Factor.

a.
$$x^3 + 64$$

c.
$$128-250y^3$$

b.
$$8y^3 - 1$$

d.
$$125x^3 + y^3$$

Example 4: Factor completely

a.
$$25x^2 - \frac{4}{49}$$

c.
$$(y+6)^2 - (y-2)^2$$

b.
$$20x^3 - 5x$$

d.
$$0.64 - x^3$$